
SimEvents®

User's Guide

R2023a

How to Contact MathWorks

Latest news: www.mathworks.com

Sales and services: www.mathworks.com/sales_and_services

User community: www.mathworks.com/matlabcentral

Technical support: www.mathworks.com/support/contact_us

Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

SimEvents® User's Guide
© COPYRIGHT 2005–2023 by The MathWorks, Inc.
The software described in this document is furnished under a license agreement. The software may be used or copied
only under the terms of the license agreement. No part of this manual may be photocopied or reproduced in any form
without prior written consent from The MathWorks, Inc.
FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by, for, or through
the federal government of the United States. By accepting delivery of the Program or Documentation, the government
hereby agrees that this software or documentation qualifies as commercial computer software or commercial computer
software documentation as such terms are used or defined in FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014.
Accordingly, the terms and conditions of this Agreement and only those rights specified in this Agreement, shall pertain
to and govern the use, modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government) and shall
supersede any conflicting contractual terms or conditions. If this License fails to meet the government's needs or is
inconsistent in any respect with federal procurement law, the government agrees to return the Program and
Documentation, unused, to The MathWorks, Inc.

Trademarks
MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand names may be
trademarks or registered trademarks of their respective holders.
Patents
MathWorks products are protected by one or more U.S. patents. Please see www.mathworks.com/patents for
more information.

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Revision History
November 2005 Online only New for Version 1.0 (Release 14SP3+)
March 2006 Online only Revised for Version 1.1 (Release 2006a)
September 2006 Online only Revised for Version 1.2 (Release 2006b)
March 2007 Online only Revised for Version 2.0 (Release 2007a)
September 2007 Online only Revised for Version 2.1 (Release 2007b)
March 2008 Online only Revised for Version 2.2 (Release 2008a)
October 2008 Online only Revised for Version 2.3 (Release 2008b)
March 2009 Online only Revised for Version 2.4 (Release 2009a)
September 2009 Online only Revised for Version 3.0 (Release 2009b)
March 2010 Online only Revised for Version 3.1 (Release 2010a)
September 2010 Online only Revised for Version 3.1.1 (Release 2010b)
April 2011 Online only Revised for Version 3.1.2 (Release 2011a)
September 2011 Online only Revised for Version 4.0 (Release 2011b)
March 2012 Online only Revised for Version 4.1 (Release 2012a)
September 2012 Online only Revised for Version 4.2 (Release 2012b)
March 2013 Online only Revised for Version 4.3 (Release 2013a)
September 2013 Online only Revised for Version 4.3.1 (Release 2013b)
March 2014 Online only Revised for Version 4.3.2 (Release 2014a)
October 2014 Online only Revised for Version 4.3.3 (Release 2014b)
March 2015 Online only Revised for Version 4.4 (Release 2015a)
September 2015 Online only Revised for Version 4.4.1 (Release 2015b)
March 2016 Online only Revised for Version 5.0 (Release 2016a)
September 2016 Online only Revised for Version 5.1 (Release 2016b)
March 2017 Online only Revised for Version 5.2 (Release 2017a)
September 2017 Online only Revised for Version 5.3 (Release 2017b)
March 2018 Online only Revised for Version 5.4 (Release 2018a)
September 2018 Online only Revised for Version 5.5 (Release 2018b)
March 2019 Online only Revised for Version 5.6 (Release 2019a)
September 2019 Online only Revised for Version 5.7 (Release 2019b)
March 2020 Online only Revised for Version 5.8 (Release 2020a)
September 2020 Online only Revised for Version 5.9 (Release 2020b)
March 2021 Online only Revised for Version 5.10 (Release 2021a)
September 2021 Online only Revised for Version 5.11 (Release 2021b)
March 2022 Online only Revised for Version 5.12 (Release 2022a)
September 2022 Online only Revised for Version 5.13 (Release 2022b)
March 2023 Online only Revised for Version 5.14 (Release 2023a)

Working with Entities
1

Events and Event Actions . 1-2
Overview of Events . 1-2
Write Custom Code for Event Actions . 1-2
SimEvents Blocks that Include Event Actions . 1-3
Using the Event Actions Assistant . 1-4
Track Events with Event Calendar . 1-6
Visualize Event Actions . 1-6
Preventing Livelock for Large Finite Numbers of Simultaneous Events . . . 1-7

Event Action Languages and Random Number Generation 1-8
Guidelines for Using MATLAB as the Event Action Language 1-8
Generate Random Numbers with Event Actions . 1-9
Parameters in Event Actions . 1-12

Generate Entities When Events Occur . 1-13
Generate Entity When First Entity is Destroyed 1-13
Generate Event-Based Entities Using Data Sets 1-14

Specify Intergeneration Times for Entities . 1-16
Determine Intergeneration Time . 1-16

Generate Multiple Entities at Time Zero . 1-21
Build the model . 1-21

Adjust Entity Generation Times Through Feedback 1-24

Count Simultaneous Departures from a Server . 1-27

Noncumulative Counting of Entities . 1-29

Working with Entity Attributes and Entity Priorities 1-32
Attach Attributes to Entities . 1-32
Set Attributes . 1-33
Use Attributes to Route Entities . 1-35
Entity Priorities . 1-36

Inspect Structures of Entities . 1-37
Display Entity Types . 1-37
Inspect Entities at Run Time . 1-38

Generate Entities Carrying Nested Data Structures 1-39

Model Resource Allocation Using Composite Entity Creator Block 1-44

v

Contents

Replicate Entities on Multiple Paths . 1-45
Modeling Notes . 1-45

Measure Point-to-Point Delays . 1-46
Basic Example Using Timer Blocks . 1-46

Modeling Queues and Servers
2

Model Basic Queuing Systems . 2-2
Sort Entities Using the Entity Queue Block . 2-2
Queue Entity Overwriting Policies . 2-6
Customize Entity Service Time . 2-8
Build a Simple Queuing System to Change Entity Attributes 2-10
Analyze Queue Length Using Statistics and Logical Queues 2-12

Broadcast Entities Using Entity Multicasting . 2-16

Use Queue Event Actions to Model a Storage Tank 2-20

Task Preemption in a Multitasking Processor . 2-24
Example Model for Task Preemption . 2-24
Model Behavior and Results . 2-24

Model Server Failure . 2-27
Server States . 2-27
Use a Gate to Implement a Failure State . 2-27

Serve High-Priority Customers by Sorting Entities Based on Priority . . 2-29

Routing Techniques
3

Route Vehicles Using an Entity Output Switch Block 3-2

Control Output Switch with Event Actions and Simulink Function 3-5
Control Output Switch with a Simulink Function Block 3-5
Specify an Initial Port Selection . 3-6

Match Entities Based on Attributes . 3-7

Role of Gates in SimEvents Models . 3-9
Overview of Gate Behavior . 3-9
Gate Behavior . 3-9

Enable a Gate for a Time Interval . 3-11
Behavior of Entity Gate Block in Enabled Mode 3-11
Sense an Entity Passing from A to B and Open a Gate 3-11
Control Joint Availability of Two Servers . 3-13

vi Contents

Modeling Message Communication Patterns with SimEvents 3-15

Build a Shared Communication Channel with Multiple Senders and
Receivers . 3-17

Model an Ethernet Communication Network with CSMA/CD Protocol . . 3-22

Work with Resources
4

Model Using Resources . 4-2
Resource Blocks . 4-2
Resource Creation Workflow . 4-2

Set Resource Amount with Attributes . 4-4

Group Entities Using Batching . 4-6

Find and Extract Entities in SimEvents Models . 4-10
Finding and Examining Entities . 4-10
Extracting Found Entities . 4-13
Changing Found Entity Attributes . 4-16
Triggering Entity Find Block with Event Actions 4-16
Building a Firewall and an Email Server . 4-18

Visualization, Statistics, and Animation
5

Interpret SimEvents Models Using Statistical Analysis 5-2
Output Statistics for Data Analysis . 5-2
Output Statistics for Run-Time Control . 5-2
Average Queue Length and Average Store Size . 5-4
Average Wait . 5-7
Number of Entities Arrived . 5-9
Number of Entities Departed . 5-9
Number of Entities Extracted . 5-9
Number of Entities in Block . 5-9
Number of Pending Entities . 5-9
Pending Entity Present in Block . 5-10
Utilization . 5-10

Visualization and Animation for Debugging . 5-11
Which Debugging Tool to Use . 5-11
Observe Entities with Animation . 5-12
Explore the System Using the Simulink Simulation Stepper 5-12
Information About Race Conditions and Random Times 5-12

Model Traffic Intersections as a Queuing Network 5-13

vii

Optimize SimEvents Models by Running Multiple Simulations 5-21
Grocery Store Model . 5-21
Build the Model . 5-21
Run Multiple Simulations to Optimize Resources 5-23

Use the Sequence Viewer to Visualize Messages, Events, and Entities . 5-25
Components of the Sequence Viewer Window . 5-26
Navigate the Lifeline Hierarchy . 5-28
View State Activity and Transitions . 5-30
View Function Calls . 5-31
Simulation Time in the Sequence Viewer Window 5-32
Redisplay of Information in the Sequence Viewer Window 5-33

Learning More About SimEvents Software
6

Event Calendar . 6-3

Save SimEvents Simulation Operating Point . 6-4

Example Model to Count Simultaneous Departures from a Server 6-9

Example Model for Noncumulative Entity Count 6-10

Adjust Entity Generation Times Through Feedback 6-11

A Simple Example of Generating Multiple Entities 6-14

A Simple Example of Event-Based Entity Generation 6-15

Serve Preferred Customers First . 6-16

Find and Examine Entities . 6-17

Extract Found Entities . 6-20

Trigger Entity Find Block with Event Actions . 6-21

Build a Firewall and an Email Server . 6-22

Implement the Custom Entity Storage Block . 6-23

Implement the Custom Entity Storage Block with Iteration Event 6-24

Implement the Custom Entity Storage Block with Two Timer Events . . 6-25

Implement the Custom Entity Generator Block . 6-26

Implement the Custom Entity Storage Block with Two Storages 6-27

Generating and Initializing Entities . 6-28

viii Contents

M/M/1 Queuing System . 6-37

M/D/1 Queuing System . 6-41

G/G/1 Queuing System and Little's Law . 6-44

Comparing Queuing Strategies . 6-48

Modeling Hybrid Systems - Tank Filling . 6-52

Resource Allocation from Multiple Pools . 6-56

Using Entity Priority to Sequence Departures . 6-61

Using Custom Visualization for Entities . 6-63

Selection Server - Select Specific Entities from Server 6-66

Flush Entities from a Queue-Server . 6-68

Server with Pause/Continue . 6-71

Simulation of a Medical Device . 6-73

Dining Philosophers Problem . 6-78

Simulate Scheduler of a Multicore Control System 6-82

Develop Custom Scheduler of a Multicore Control System 6-87

Distributing Multi-Class Jobs to Service Stations 6-95

Effects of Communication Delays on an ABS Control System 6-97

Aircraft Boarding Process Flow . 6-101

Optimization of Shared Resources in a Batch Production Process 6-103

Modeling a Kanban Production System . 6-113

Job Scheduling and Resource Estimation for a Manufacturing Plant . 6-123

Modeling Load Within a Dynamic Voltage Scaling Application 6-138

Modeling Machine Failure . 6-141

Inventory Management . 6-146

Modeling Cyber-Physical Systems . 6-149

802.11 MAC and Application Throughput Measurement 6-154

802.11ax System-Level Simulation with Physical Layer Abstraction . . 6-171

ix

Use SimEvents with Simulink
7

Working with SimEvents and Simulink . 7-2
Exchange Data Between SimEvents and Simulink 7-2
Time-Based Signals and SimEvents Block Transitions 7-2
SimEvents Support for Simulink Subsystems . 7-2
Save Simulation Data . 7-3

Solvers for Discrete-Event Systems . 7-5
Variable-Step Solvers for Discrete-Event Systems 7-5
Fixed-Step Solvers for Discrete-Event Systems . 7-5

Model Simple Order Fulfilment Using Autonomous Robots 7-7
Order Fulfilment Model . 7-7
Warehouse Component . 7-8
Order Queue Component . 7-12
Results . 7-12

Build Discrete-Event Systems Using Charts
8

Create Custom Queuing Systems Using Discrete-Event Stateflow Charts
. 8-2

Properties of Discrete-Event Chart . 8-2
Define Local Messages . 8-3
Specify Message Properties . 8-4
Event Triggering . 8-4
Message Triggering . 8-5
Temporal Triggering . 8-5

Discrete-Event Chart Precise Timing . 8-7

Trigger a Discrete-Event Chart Block on Message Arrival 8-10

Dynamic Scheduling of Discrete-Event Chart Block 8-19

Build Discrete-Event Systems Using System Objects
9

Create Custom Blocks Using MATLAB Discrete-Event System Block 9-2
Entity Types, Ports, and Storage in a Discrete-Event System Framework

. 9-2
Events . 9-5
Implement a Discrete-Event System Object with MATLAB Discrete-Event

System Block . 9-6

x Contents

Delay Entities with a Custom Entity Storage Block 9-9
Create the Discrete-Event System Object . 9-9
Implementing the Custom Entity Storage Block 9-11

Create a Custom Entity Storage Block with Iteration Event 9-14
Create the Discrete-Event System Object . 9-14
Define Custom Block Behavior . 9-15
Implement Custom Block . 9-16

Custom Entity Storage Block with Multiple Timer Events 9-19
Create the Discrete-Event System Object with Multiple Timer Events . . . 9-19
Custom Block Behavior . 9-20
Implement Custom Block . 9-21

Custom Entity Generator Block with Signal Input and Signal Output . . 9-24
Create the Discrete-Event System Object . 9-24
Custom Block Behavior . 9-26
Implement Custom Block . 9-27

Build a Custom Block with Multiple Storages . 9-31
Create the Discrete-Event System Object . 9-31
Custom Block Behavior . 9-33
Implement the Custom Block . 9-34

Create a Custom Resource Acquirer Block . 9-38
Create the Discrete-Event System Object . 9-38
Custom Block Behavior . 9-39
Implement the Custom Block . 9-40

Create a Discrete-Event System Object . 9-44
Methods . 9-44
Inherited Methods from matlab.System Class . 9-46
Reference and Extract Entities . 9-47

Generate Code for MATLAB Discrete-Event System Blocks 9-48
Migrate Existing MATLAB Discrete-Event System System object 9-48
Limitations of Code Generation with Discrete-Event System Block 9-50

Customize Discrete-Event System Behavior Using Events and Event
Actions . 9-51

Event Types and Event Actions . 9-51
Event Identifiers . 9-53

Call Simulink Function from a MATLAB Discrete-Event System Block . 9-55
Modify Entity Attributes . 9-56
Build the Model . 9-56

Resource Scheduling Using MATLAB Discrete-Event System and Data
Store Memory Blocks . 9-58

xi

Custom Visualization
10

Use SimulationObserver Class to Monitor a SimEvents Model 10-2
SimulationObserver Class . 10-2
Custom Visualization Workflow . 10-2
Create an Application . 10-3
Use the Observer to Monitor the Model . 10-4
Stop Simulation and Disconnect the Model . 10-4

Observe Entities Using simevents.SimulationObserver Class 10-5

Migrating SimEvents Models
11

Migration Considerations . 11-2
When You Should Not Migrate . 11-3

Migration Workflow . 11-4

Identify and Redefine Entity Types . 11-6

Replace Old Blocks . 11-8

Connect Signal Ports . 11-11
If Connected to Gateway Blocks . 11-11
If Using Get Attribute Blocks to Observe Output 11-11
If Connected to Computation Blocks . 11-12
If Connected to Reactive Ports . 11-13

Write Event Actions for Legacy Models . 11-15
Replace Set Attribute Blocks with Event Actions 11-15
Get Attribute Values . 11-16
Replace Random Number Distributions in Event Actions 11-16
Replace Event-Based Sequence Block with Event Actions 11-18
Replace Attribute Function Blocks with Event Actions 11-18
If Using Simulink Signals in an Event-Based Computation 11-20

Observe Output . 11-22

Reactive Ports . 11-23

Troubleshoot SimEvents Models
12

Debug SimEvents Models . 12-2
Start the Debugger . 12-3
Step Through Model . 12-3

xii Contents

Working with Entities

• “Events and Event Actions” on page 1-2
• “Event Action Languages and Random Number Generation” on page 1-8
• “Generate Entities When Events Occur” on page 1-13
• “Specify Intergeneration Times for Entities” on page 1-16
• “Generate Multiple Entities at Time Zero” on page 1-21
• “Adjust Entity Generation Times Through Feedback” on page 1-24
• “Count Simultaneous Departures from a Server” on page 1-27
• “Noncumulative Counting of Entities” on page 1-29
• “Working with Entity Attributes and Entity Priorities” on page 1-32
• “Inspect Structures of Entities” on page 1-37
• “Generate Entities Carrying Nested Data Structures” on page 1-39
• “Model Resource Allocation Using Composite Entity Creator Block” on page 1-44
• “Replicate Entities on Multiple Paths” on page 1-45
• “Measure Point-to-Point Delays” on page 1-46

1

Events and Event Actions
In this section...
“Overview of Events” on page 1-2
“Write Custom Code for Event Actions” on page 1-2
“SimEvents Blocks that Include Event Actions” on page 1-3
“Using the Event Actions Assistant” on page 1-4
“Track Events with Event Calendar” on page 1-6
“Visualize Event Actions” on page 1-6
“Preventing Livelock for Large Finite Numbers of Simultaneous Events” on page 1-7

In a discrete-event simulation, an event is an instantaneous incident that may change a state variable,
output, or the occurrence of other events. By using SimEvents, you can create custom actions that
happen when an event occurs for an entity such as when an entity enters or exits a block.

Overview of Events
In SimEvents, you can specify event actions based on entity status. A typical event sequence in a
SimEvents model is:

1 An entity is generated.
2 The entity advances from an Entity Generator block to an Entity Server block.
3 The Entity Server block completes the service of an entity.
4 The entity exits Entity Server block and enters an Entity Terminator block.
5 The entity is destroyed.

When an entity is created, enters or exits a block, or is serviced or destroyed, the entity changes
status. You can use certain SimEvents library blocks to create event actions that trigger when these
status changes occur. You can write event actions by using:

• MATLAB® code that performs calculations.
• Simulink® function calls that call a function that performs computations.

For more information about event action languages, see “Event Action Languages and Random
Number Generation” on page 1-8.

Write Custom Code for Event Actions
To create event action code and language, in a SimEvents block, select the Event actions tab and
choose the event that invokes the action. For example, in the Entity Generator block, there are two
events provided to invoke event actions, Generate and Exit. The event actions are triggered when an
entity is generated or exits the block.

1 Working with Entities

1-2

If you click the Generate event, you can write your code in the Generate action field.

When you use event actions:

• The entities are available as MATLAB structures and include structure fields that represent values
of the entity attributes.

• Reserved fields, such as entity ID and entity priority, are also available in a separate MATLAB
structure called entitySys.

For an example of using event actions, see “Manage Entities Using Event Actions”.

SimEvents Blocks that Include Event Actions
You can see what event actions are available on the Event actions tab of a block. These are the
possible events for which you can create actions.

Entity
Generator
Block

Entity Queue
Block

Entity Server
Block

Entity
Terminator
Block

Resource
Acquirer Block

Entity Batch
Creator Block

Entity
generation

Entity entry to
queue block

Entity entry to
server block

Entity entry to
terminator
block

Entity entry to
acquirer block

Entity entry to
batch block

Entity exit from
block

Entity exit from
block

Service
completion of
entity

N/A Entity exit from
acquirer block

Entity batch
generation

N/A Entity is
blocked

Entity exit from
block

N/A Entity is
blocked

Entity exit from
block

N/A N/A Entity is
blocked

N/A N/A Entity is
blocked

N/A N/A Entity is
preempted

N/A N/A N/A

 Events and Event Actions

1-3

This illustration shows the flow of actions as entities move through a discrete-event system
simulation.

Notes:

• Entity entry, exit, and blocking actions are performed as part of an entity forward event.
• Service completion action is performed following a timer event.
• Entity termination event performs a destruction action.

You can also modify the entity attributes (entityName.attributeName), entity priorities
(sys.entity.priority), and entity IDs (sys.entity.id). However, you cannot change the entity
attributes or system properties (entitySys) for exit actions. Attempting to change these values
causes an error at simulation.

Using the Event Actions Assistant
The Event Actions Assistant helps you create code for repeated sequence of event actions or random
event actions according to a statistical distribution. For example, to access the assistant in an Entity
Generator block:

1 Open the block and select the Event actions tab and select the Generate event action.
2 In the Generate action field, click the Insert pattern button.

1 Working with Entities

1-4

Suppose that you want to generate entities and assign random attribute values to them. The values
are generated from a uniform distribution between 0 and 1.

To achieve this behavior:

1 Select Random number.
2 To select a uniform distribution, set the Distribution parameter to Uniform.
3 By default, the Minimum and the Maximum parameters are specified as 0 and 1, respectively.
4 To attach the values to the entity attribute Attribute1, set the Assign output to parameter to

entity.Attribute1.

The assistant creates the code.

 Events and Event Actions

1-5

The code creates a persistent variable for the seed. Then a random value is attached to
entity.Attribute1. After you define an action, an asterisk (*) appears in the Event actions tab to
indicate that a code is called for that event. In this case, an asterisk is displayed after the Generate
event action.

For more information on the event actions assistant, see “Event Action Languages and Random
Number Generation” on page 1-8.

Track Events with Event Calendar
SimEvents does not represent events graphically. Instead, the SimEvents software maintains an event
calendar that schedules events. You can use the Event Calendar to observe events when you debug a
SimEvents model. For more information, see “Debug SimEvents Models” on page 12-2.

You can also interact with the event calendar by using simevents.SimulationObserver methods.
You can create a custom event observer using this class and its methods. For more information, see
“Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2.

Visualize Event Actions
When you create an event action, {...} badge appears on the block to indicate that the action is
created. The badges that appear depending on which event actions have associated code.

For instance, this illustration shows an Entity Queue block with event actions that are invoked by the
entity entry and exit from the block.

1 Working with Entities

1-6

When you hover over the badge, you can see the event action. For example, this illustration depicts
an entity exit action.

Double-clicking the badge directly opens the Event actions tab of the block.

Preventing Livelock for Large Finite Numbers of Simultaneous Events

Simultaneous events are events that occur at the same simulation clock time. Events scheduled on
the event calendar at times T and T+Δt are considered simultaneous if 0 ≤ Δt ≤ 128*eps*T, where
eps is the floating-point relative accuracy in MATLAB software and T is the simulation time. If your
simulation creates a large number of simultaneous events, this number might be an indication of an
unwanted livelock situation. During a livelock situation, a block returns to the same state infinitely
often at the same time instant. SimEvents software prevents livelock with these limits:

• SimEvents limits the maximum number of simultaneous events per block to 5,000.
• SimEvents limits the maximum number of simultaneous events per model to 100,000.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator | Discrete Event Chart | Composite
Entity Creator | Composite Entity Splitter

Related Examples
• “Generate Entities When Events Occur” on page 1-13

More About
• “Entities in a SimEvents Model”
• “Event Action Languages and Random Number Generation” on page 1-8
• “Event Calendar” on page 6-3

 Events and Event Actions

1-7

Event Action Languages and Random Number Generation

In this section...
“Guidelines for Using MATLAB as the Event Action Language” on page 1-8
“Generate Random Numbers with Event Actions” on page 1-9
“Parameters in Event Actions” on page 1-12

You can write SimEvents actions using:

• MATLAB code — Use MATLAB. For information on guidelines for using MATLAB code as the event
action language, see “Guidelines for Using MATLAB as the Event Action Language” on page 1-8

• Simulink functions — Use the Simulink Function block. The Simulink Function block does not
accept entities as input.

Guidelines for Using MATLAB as the Event Action Language

In general, using MATLAB as the SimEvents event action language follows the same rules as the use
of MATLAB in the MATLAB Function block.

• Include a type prefix for identifiers of enumerated values — The identifier TrafficColors.Red
is valid, but Red is not.

• Use the MATLAB format for comments — Use % to specify comments for consistency with
MATLAB. For example, the following comment is valid:

% This is a valid comment in the style of MATLAB

• Use one-based indexing for vectors and matrices — One-based indexing is consistent with
MATLAB syntax.

• Use parentheses instead of brackets to index into vectors and matrices — This statement is valid:

a(2,5) = 0;

This statement is not valid:

a[2][5] = 0;

• Persistent variable guidelines:

• Manage states that are not part of the entity structure using MATLAB persistent variables.
• Persistent variables defined in any event action of a block are scoped to only that action.
• Block can share persistent variables across all of its event action by managing it in a MATLAB

function on path (that is invoked from its event actions).
• Two different blocks cannot share the same persistent variable.

• Assign an initial value to local and output data — When using MATLAB as the action language,
data read without an initial value causes an error.

• Do not use parameters that are of data type cell array.

1 Working with Entities

1-8

Generate Random Numbers with Event Actions
You can generate random numbers using various distributions. There are two modeling approaches to
use seeds during random number generation.

• You can use persistent variables for initializing unique seeds for each block in your model.
• You can use coder.extrinsic() function to generate seeds without persistent variables.

To generate these random distributions, use code in the Usage column of this table in SimEvents
blocks that support event actions or intergeneration time actions.

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox™
Product

Exponential Mean (m) -m * log(1-rand) No
Uniform Minimum (m)

Maximum (M)

m + (M-m) * rand No

Bernoulli Probability for output
to be 1 (P)

binornd(1,P) Yes

Binomial Probability of success
in a single trial (P)

Number of trials (N)

binornd(N,P) Yes

Triangular Minimum (m)

Maximum (M)

Mode (mode)

persistent pd
if isempty(pd)
 pd = makedist('Triangular',...
 'a',m,'b',mode,'c',M)
end
random(pd)

Yes

Gamma Threshold (T)

Scale (a)

Shape (b)

gamrnd(b,a) Yes

Gaussian (normal) Mean (m)

Standard deviation (d)

m + d*randn No

Geometric Probability of success
in a single trial (P)

geornd(P) Yes

Poisson Mean (m) poissrnd(m) Yes
Lognormal Threshold (T)

Mu (mu)

Sigma (S)

T + lognrnd(mu,S) Yes

 Event Action Languages and Random Number Generation

1-9

Distribution Parameters Usage Requires
Statistics and
Machine
Learning
Toolbox™
Product

Log-logistic Threshold (T)

Scale (a)

persistent pd
if isempty(pd)
 pd = makedist('Loglogistic',...
 'mu',m,'sigma',S);
end
random(pd)

Yes

Beta Minimum (m)

Maximum (M)

Shape parameter a (a)

Shape parameter b (b)

betarnd(a,b) Yes

Discrete uniform Minimum (m)

Maximum (M)

Number of values (N)

persistent V P
if isempty(V)
 step = (M-m)/N;
 V = m : step : M;
 P = 0 : 1/N : N;
end
r = rand;
idx = find(r < P, 1);
V(idx)

No

Weibull Threshold (T)

Scale (a)

Shape (b)

T + wblrnd(a,b) Yes

Arbitrary continuous Value vector (V)

Cumulative probability
function vector (P)

r = rand;
if r == 0
 val = V(1);
else
 idx = find(r < P,1);
 val = V(idx-1) + ...
 (V(idx)-V(idx-1))*(r-P(idx-1));
end

No

Arbitrary discrete Value vector (V)

Probability vector (P)

r = rand;
idx = find(r < cumsum(P),1);
V(idx)

No

For an example, see “Model Traffic Intersections as a Queuing Network” on page 5-13.

If you need additional random number distributions, see “Statistics and Machine Learning Toolbox”.

Random Number Distribution with Persistent Variables

To generate random numbers, initialize a unique seed for each block in your model. If you use a
statistical pattern, you can manually change the initial seed to a unique value for each block to
generate independent samples from the distributions.

1 Working with Entities

1-10

To reset the initial seed value each time a simulation starts, use MATLAB code to initialize a
persistent variable in event actions, for example:

persistent init
if isempty(init)
 rng(12234);
 init=true;
end

Here is an example code. The value vector is assigned to FinalStop:

% Set the initial seed.
persistent init
if isempty(init)
 rng(12234);
 init=true;
end
% Create random variable, x.
x=rand();
%
% Assign values within the appropriate range
% using the cumulative probability vector.
if x < 0.3
 entity.FinalStop = 2;
elseif x >= 0.3 && x< 0.6
 entity.FinalStop = 3;
elseif x >= 0.6 && x< 0.7
 entity.FinalStop = 4;
elseif x >= 0.7 && x< 0.9
 entity.FinalStop = 5;
else
 entity.FinalStop = 6;
end

Random Number Generation with Callbacks

In some scenarios, you generate random numbers without using the persistent variables. In this case,
use coder.extrinsic() function to make sure that SimEvents is using the function in MATLAB and
a seed is defined in the base workspace of MATLAB. This may cause performance decrease in
simulation.

Consider this code as an example.

% Random number generation
coder.extrinsic('rand');
value = 1;
value = rand();
% Pattern: Exponential distribution
mu = 0.5;
dt = -1/mu * log(1 - value);

The output of the extrinsic function is an mxArray. To convert it to a known type, a variable val = 1
is declared to set its type to double and rand is assigned to that variable val=rand. For information
about extrinsic functions, see “Working with mxArrays”.

For an example, see “Model Traffic Intersections as a Queuing Network” on page 5-13.

 Event Action Languages and Random Number Generation

1-11

Parameters in Event Actions
From within an event action, you can refer to these parameters:

• Mask-specific parameters you define using the Mask Editor Parameters pane.
• Any variable you define in a workspace (such as base workspace or model workspace).
• Parameters you define using the Simulink.Parameter object.

Note With SimEvents actions, you cannot:

• Modify parameters from within an event action.
• Tune parameters during simulation.
• Event actions are not supported with string entity data type.

See Also
Simulink Function | Entity Generator | Entity Queue | Multicast Receive Queue | Entity Server | Entity
Terminator | Entity Replicator | Resource Acquirer | MATLAB Function | Simulink.Parameter

Related Examples
• “Generate Entities When Events Occur” on page 1-13

More About
• “Events and Event Actions” on page 1-2
• “Mask Editor Overview”

1 Working with Entities

1-12

Generate Entities When Events Occur
In this section...
“Generate Entity When First Entity is Destroyed” on page 1-13
“Generate Event-Based Entities Using Data Sets” on page 1-14

In addition to time-based entity generation, the Entity Generator block enables you to generate
entities in response to events that occur during the simulation. In event-based generation, a new
entity is generated whenever a message arrives at the input port of the Entity Generator block.

Event times and the time intervals between pairs of successive entities are not necessarily
predictable in advance.

Generating entities when events occur is appropriate if you want the dynamics of your model to
determine when to generate entities.

Generate Entity When First Entity is Destroyed
To generate an entity when the first entity is destroyed, use two Entity Generator blocks and a
Simulink Function block. The Entity Terminator block calls the Simulink Function after destroying the
first entity. For more information, see “Generating and Initializing Entities” on page 6-28.

In this example, Entity Generator1 generates the first entity. SendMessage contains the genNext
function, which sends a message.

 Generate Entities When Events Occur

1-13

The Entity Terminator block calls the genNext function.

Generate Event-Based Entities Using Data Sets
For an example that uses an Excel® spreadsheet, see “Generating and Initializing Entities” on page 6-
28.

See Also
Entity Generator | Entity Queue | Multicast Receive Queue | Entity Server | Entity Terminator |
Discrete Event Chart | MATLAB Discrete Event System | Entity Replicator | Entity Input Switch |
Entity Output Switch | Entity Multicast | Entity Gate | Composite Entity Splitter

1 Working with Entities

1-14

Related Examples
• “Specify Intergeneration Times for Entities” on page 1-16
• “Working with Entity Attributes and Entity Priorities” on page 1-32
• “Inspect Structures of Entities” on page 1-37
• “Generate Multiple Entities at Time Zero” on page 1-21
• “Count Simultaneous Departures from a Server” on page 1-27
• “Replicate Entities on Multiple Paths” on page 1-45

More About
• “Entities in a SimEvents Model”
• “Events and Event Actions” on page 1-2

 Generate Entities When Events Occur

1-15

Specify Intergeneration Times for Entities
The intergeneration time is the time interval between successive entities that the block generates.
You can have a generation process that is:

• Periodic
• Sampled from a random distribution or time-based signal
• From custom code

For example, if the block generates entities at T = 50, T = 53, T = 60, and T = 60.1, the
corresponding intergeneration times are 3, 7, and 0.1. After each new entity departs, the block
determines the intergeneration time that represents the interval until the block generates the next
entity.

Determine Intergeneration Time
You configure the Entity Generator block by indicating criteria that it uses to determine
intergeneration times for the entities it creates. You can generate entities:

• From random distribution
• Periodically
• At arbitrary times

Use the dropdown list in the Time source parameter of the Entity Generation block to determine
intergeneration times:

• Dialog

Uses the Period parameter to periodically vary the intergeneration times.
• Signal port

Uses a signal from an external block, such as the Sine wave block, to vary the intergeneration
times.

• MATLAB action

Enables an Intergeneration time action field, in which you enter MATLAB code to customize
the intergeneration times.

Periodically Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity Terminator, and
Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source parameter to
Dialog.

3 In the Statistics tab of the Entity Terminator block, select the Number of entities arrived
check box.

4 Connect these blocks and simulate the model. The period is 1.

1 Working with Entities

1-16

5 Vary the period to 8 and simulate the model again. Observe the change in the scope.

Use a Signal to Vary the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator and Entity Terminator
blocks. From the Simulink library add the Sine Wave, and Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source parameter to
Signal port.

A new signal port appears on the Entity Generator block.
3 In the Statistics tab of the Entity Terminator block, select the Number of entities arrived

check box.
4 Double-click the Sine Wave block. By default, the first value of the Sine Wave block is 0. To add a

constant value to the sine to produce the output of this block, change the Bias parameter to
another value, for example, 1.5.

5 Connect these blocks and simulate the model.

 Specify Intergeneration Times for Entities

1-17

Upon generating each entity, the Entity Generator block reads the value of the input signal and
uses that value as the time interval until the next entity generation.

Notice the capital E on the signal line from the Sine Wave block to the Entity Generator block.
This icon indicates the transition from a time-based system to a discrete-event system.

Customize the Variation of the Intergeneration Times

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity Terminator, and
Scope blocks.

2 In the Entity Generation tab of the Entity Generator, set the Time source parameter to
MATLAB action.

A new Intergeneration time action field appears on the Entity Generator block.
3 To customize the intergeneration times for your model, in the Intergeneration time action

field, enter MATLAB code, for example:

dt = rand();

Note For intergeneration times, you must set the fixed name, dt. You cannot set any other
variable name for this value.

4 In the Statistics tab of the Entity Terminator block, select the Number of entities arrived check
box.

5 Connect these blocks and simulate the model.

1 Working with Entities

1-18

To generate entities with exponential random arrival times, in the Intergeneration time action
field, enter MATLAB code that uses the mean function, for example:

mean = 1;
dt = -mean*log(1-rand());

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator | Discrete Event Chart | MATLAB
Discrete Event System | Entity Replicator

 Specify Intergeneration Times for Entities

1-19

Related Examples
• “Generate Entities When Events Occur” on page 1-13
• “Working with Entity Attributes and Entity Priorities” on page 1-32
• “Inspect Structures of Entities” on page 1-37
• “Generate Multiple Entities at Time Zero” on page 1-21
• “Count Simultaneous Departures from a Server” on page 1-27
• “Model Resource Allocation Using Composite Entity Creator Block” on page 1-44
• “Replicate Entities on Multiple Paths” on page 1-45

More About
• “Entities in a SimEvents Model”
• “Role of Entity Ports and Paths”

1 Working with Entities

1-20

Generate Multiple Entities at Time Zero
In a discrete-event simulation, an event is an observation of an instantaneous incident that may
change a state variable, an output, and/or the occurrence of other events.

Suppose that you want to:

• Preload a queue or server with entities at the start of the simulation, before you analyze queueing
or processing delays.

• Initialize the capacity of a shared resource before you analyze resource allocation behavior.

These scenarios requires multiple entity generation at the simulation start.

In these scenarios, you can simultaneously generate multiple entities at the start of the simulation.
You can then observe the behavior of only those entities for the remainder of the simulation.

Build the model
To generate multiple entities at time 0, use MATLAB code in the Entity Generator block.

To open the example model without performing the configuration steps, see A Simple Example of
Generating Multiple Entities.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity Terminator, and
Dashboard Scope blocks.

2 Double-click the Entity Generator block.
3 From the Time source drop-down list, select MATLAB action.
4 In the Intergeneration time action field, use MATLAB code to enter the number of entities that

you want to generate. For example, you could use 8. In that case, at simulation time 0, the Entity
Generator block generates 8 simultaneous events.

 Generate Multiple Entities at Time Zero

1-21

5 In the Events action tab, randomize the entity attribute. Select the Generate event action and,
in the Generate action field, enter the MATLAB code:

entity.Attribute1=rand();

The output of the Dashboard Scope block shows that the software generates multiple entities at time
0.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Generate Entities When Events Occur” on page 1-13
• “Specify Intergeneration Times for Entities” on page 1-16
• “Working with Entity Attributes and Entity Priorities” on page 1-32

1 Working with Entities

1-22

• “Inspect Structures of Entities” on page 1-37
• “Count Simultaneous Departures from a Server” on page 1-27

More About
• “Entities in a SimEvents Model”

 Generate Multiple Entities at Time Zero

1-23

Adjust Entity Generation Times Through Feedback

This example shows a queuing system in which feedback influences the arrival rate. The goal of the
feedback loop is to stabilize the entity queue by slowing the entity generation rate of the Entity
Generator block as more entities accumulate in the Entity Queue block and the Entity Server block.

The diagram shows a simple queuing system with an Entity Generator, an Entity Queue, an Entity
Server, and an Entity Terminator block. For more information about building this simple queuing
system, see “Create a Discrete-Event Model”.

The capacity of the Entity Server block is 1. This causes an increase in the queue length without
feedback. The goal is to regulate entity intergeneration time based on the size of the queue and the
number of entities waiting to be served.

• In the Entity Generator block, select MATLAB action as the Time source. Add this code to the
Intergeneration time action field.

persistent rngInit;

if isempty(rngInit)
 seed = 12345;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = getAvgInterGenTime();
dt = -mu*log(1-rand());

The entity intergeneration time dt is generated from an exponential distribution with mean mu, which
is determined by the function getAvgInterGenTime().

• In the Entity Queue block, in the Statistics tab, select the Number of entities in block, n and
Average queue length, l as output statistics.

• In the Entity Server block, select MATLAB action as the Service time source. Add this code to
the Service time action field.

1 Working with Entities

1-24

persistent rngInit;
if isempty(rngInit)
 seed = 67868;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = 3;
dt = -mu*log(1-rand());

The service time |dt| is drawn from an exponential distribution with
mean |3|.

• In the Entity Server block, in the Statistics tab, select the Number of entities in block, n as
output statistics.

• Add a Simulink Function block. On the Simulink Function block, double-click the function
signature and enter y = getAvgInterGenTime().

• In the Simulink Function block:

1 Add two In1 blocks and rename them as numInQueue and numInServer.
2 numInQueue represents the current number of entities accumulated in the queue and

numInServer represents the current number of entities accumulated in the server.
3 Use Add block to add these two inputs.
4 Use a Bias block and set the Bias parameter as 1. The constant bias 1 is to guarantee a nonzero

intergeneration time.

Optionally, select Function Connections from the Information Overlays under the Debug tab to
display the feedback loop from the Simulink Function block to the Entity Generation block.

• In the parent model, connect the Number of entities in block, n statistics from the Entity
Queue and Entity Server blocks to the Simulink Function block.

• Connect a Scope block to the Average queue length, l statistic from the Entity Queue block. The
goal is to investigate the average queue length.

• Increase the simulation time to 10000 and simulate the model.

• Observe that the Average queue length, l in the scope is nonincreasing due to the effect of
feedback for the discouraged entity generation rate.

 Adjust Entity Generation Times Through Feedback

1-25

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Generate Entities When Events Occur” on page 1-13
• “Generate Multiple Entities at Time Zero” on page 1-21
• “Count Simultaneous Departures from a Server” on page 1-27
• “Replicate Entities on Multiple Paths” on page 1-45

1 Working with Entities

1-26

Count Simultaneous Departures from a Server
This example shows how to count the simultaneous departures of entities from a server. Use the d
output from the Entity Server block to learn how many entities have departed (or arrived at) the
block. The output signal also indicates when departures occurred. This method of counting is
cumulative throughout the simulation.

To open the example, see Count Simultaneous Departures.

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity Server, Entity
Terminator, and Simulink Function blocks. Add a Simulink Scope block.

2 Double-click the Entity Generator block.

• In the Event actions tab, to generate random attribute values, enter:

entity.Attribute1=rand();
3 Double-click the Entity Server block. In the Main tab:

• In the Capacity parameter, enter inf.
• For the Service time parameter, select MATLAB action.
• In the Service time action parameter, enter:

dt = getServiceTime();
• In the Statistics tab, select Number of entities departed, d.

4 In the Simulink Function block, add a Repeating Sequence Stair and define the
getServiceTime function.

 Count Simultaneous Departures from a Server

1-27

5 Connect the blocks as shown and simulate the model. Observe that the scope displays
simultaneous entity departures for the corresponding time.

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator | Resource Acquirer | Entity
Multicast | Entity Gate | Composite Entity Creator

Related Examples
• “Generate Entities When Events Occur” on page 1-13
• “Specify Intergeneration Times for Entities” on page 1-16
• “Working with Entity Attributes and Entity Priorities” on page 1-32
• “Generate Multiple Entities at Time Zero” on page 1-21
• “Replicate Entities on Multiple Paths” on page 1-45

More About
• “Entities in a SimEvents Model”

1 Working with Entities

1-28

Noncumulative Counting of Entities
This example shows how to count entities, which arrive to an Entity Terminator block, in a
noncumulative way by resetting the counter at each time instant.

To open the example, see Example Model for Noncumulative Entity Count.

1 Add two Entity Generator blocks, an Entity Input Switch block, an Entity Terminator block, and a
Simulink Function block from the SimEvents library to a new model. For more information, see
Simulink Function.

2 Connect the blocks as shown in the diagram.
3 Double-click the Entity Generator1 block. In the Entity generation tab, set the Period to 2.

In the model, 2 entities arrive to Entity Terminator block at time 0, 2, 4, 6, 8, 10 and 1 entity
arrives at time 1, 3, 5, 7, 9.

4 Double-click the function signature on the Simulink Function block and enter nonCumCount().

5 Double-click the Simulink Function block. Add a Digital Clock block from the Simulink >
Sources library. Set the Sample time parameter to -1 for inherited sample time.

6 Add a MATLAB Function block. Double-click it and enter this code.

function y = fcn(curtime)
% Define count for counting and prevtime for previous time stamp
persistent count prevtime;
% Check if prevtime is empty and initiate the count
if isempty(prevtime)
 prevtime = curtime;
 count = 0;
end
% Increase count by 1 for equal time stamps.
if isequal(curtime, prevtime)
 count = count + 1;
% Reset count to 1 if two consequitive time stamps are not identical
else

 Noncumulative Counting of Entities

1-29

 prevtime = curtime;
 count = 1;
end
% Output count for visualization
y = count;
end

Save the file (optional).
7 Connect the output of the MATLAB Function block to a Simulink Scope block.
8 In the parent model, double-click the Entity Terminator block. In the Entry action field of the

Event actions tab, enter this code.

nonCumCount();
9 Simulate the model and open the Scope block in the Simulink Function block.
10 Change the plotting settings of the Scope block by right-clicking the plot and selecting Style.

Select no line for the Line and circle for the Marker parameters.
11 Observe that the block illustrates the noncumulative entity count for the entities arriving the

Entity Terminator block. The block also illustrates the instantaneous entity arrivals at each time.

To count the number of events that occur instantaneously, use nonCumCount() in any Event
actions.

See Also
Entity Generator | Entity Terminator | Entity Input Switch | Entity Gate

1 Working with Entities

1-30

Related Examples
• “Count Simultaneous Departures from a Server” on page 1-27
• “Generate Entities When Events Occur” on page 1-13
• “Specify Intergeneration Times for Entities” on page 1-16
• “Generate Multiple Entities at Time Zero” on page 1-21

More About
• “Entities in a SimEvents Model”
• “Role of Entity Ports and Paths”

 Noncumulative Counting of Entities

1-31

Working with Entity Attributes and Entity Priorities

In this section...
“Attach Attributes to Entities” on page 1-32
“Set Attributes” on page 1-33
“Use Attributes to Route Entities” on page 1-35
“Entity Priorities” on page 1-36

You can attach data to an entity using one or more entity attributes. Each attribute has a name and a
numeric value. You can read or change the values of attributes during the simulation.

For example, suppose your entities represent a message that you are transmitting across a
communication network. You can attach the length of each particular message to the message itself
using an attribute named length.

You can use attributes to describe any measurable property of an entity. For example, you could use
attribute values to specify:

• Service time to be used by a downstream server block
• Switching criterion to be used by a downstream switch block

You can also set entity priorities which is used to prioritize events

Attach Attributes to Entities
To attach attributes to an entity, use the Entity Generator block. You can attach attributes such as:

• Constant values
• Random numbers
• Elements of either a vector in the MATLAB workspace or a vector that you can type in a block

dialog box
• Values of an output argument of a MATLAB function
• Values of a signal
• Outputs of a function defined in Simulink or Stateflow® environment.

These lists summarize the characteristics of attribute values for structured entity types.

Attribute values must be:

• Real or complex
• Arrays of any dimension, where the dimensions remain fixed throughout the simulation
• All built-in data types (double, single, int8, uint8, int16, uint16, int32, and uint32)
• Enumerations

For a given attribute, the characteristics of the value must be consistent throughout the discrete-
event system in the model. Attribute values can not be:

1 Working with Entities

1-32

Not Permitted as Attribute Values

• Structures
• Buses
• Variable-size signals or variable-size arrays
• Frames

Set Attributes
To build and manage the list of attributes to attach to each departing entity, use the controls under
the Define attributes section of the Entity Generator block. Each attribute appears as a row in a
table.

Using these controls, you can:

• Manually add an attribute.
• Modify an attribute that you previously created.

The buttons under Set Attribute perform these actions.

Button Action Notes
Add an attribute to the table. Rename the attribute and specify

its properties.

Remove the selected attribute from
the attribute table.

When you delete an attribute this
way, no confirmation appears and
you cannot undo the operation.

You can also organize the attributes by clicking and .

The table displays the attributes you added manually. Use it to set these attribute properties.

Property Specify Use
Attribute Name The name of the attribute. Each

attribute must have a unique
name.

Double-click the existing name,
and then type the new name.

Attribute Initial Value The value to assign to the
attribute.

Double-click the value, and then
type the value you want to
assign.

Write Functions to Manipulate Attributes

To manipulate attributes using MATLAB code, use the Event actions tab of a block. To access the
attribute, use the notation entityName.attributeName. For example:

entity.Attribute1 = 5;

Suppose that you want to modify the attribute of an entity after it has been served.

 Working with Entity Attributes and Entity Priorities

1-33

1 In a new model, from the SimEvents library, drag the Entity Generator, Entity Server, and Entity
Terminator blocks and connect them.

2 Double-click Entity Generator block and, in the Entity type tab, add three attributes to the
attributes table.

3 Double-click on the second and third attributes in the Attribute Name column and rename them
Attribute2 and Attribute3, respectively.

4 In the Entity Server block, click the Event actions tab.
5 Click Service complete, and enter MATLAB code to manipulate the entity attributes you added

in the Entity Generator block:

1 Working with Entities

1-34

Click OK. The Entity Server block displays the event action language.
6 To see the action, in the model, hover over the Entity Server block event action icon block.

Use Attributes to Route Entities

Suppose entities represent manufactured items that undergo a quality control process and a
packaging process. Items that pass the quality control test proceed to one of three packaging
stations, while items that fail the quality control test proceed to one of two rework stations. You can
model the decision-making process by using these switches:

• An Entity Output Switch block that routes items based on an attribute that stores the results of
the quality control test

• An Entity Output Switch block that routes passing-quality items to the packaging stations
• An Entity Output Switch block that routes failing-quality items to the rework stations

You can use the block Switching criterion parameter From attribute option to use an attribute
to select the output port. For an example, see “Model Traffic Intersections as a Queuing Network” on
page 5-13.

 Working with Entity Attributes and Entity Priorities

1-35

Entity Priorities
SimEvents uses entity priorities to prioritize events. The smaller the priority value, the higher the
priority.

You specify entity priorities when you generate entities. In the Entity Generator block, in the Entity
Type tab, the Entity priority specifies the priority value of the generated entity.

You can later change entity priorities using an event action. For example, in the Entity Generator
block Event actions tab, you can define an event action to change the entity priority during
simulation using code such as:

entitySys.priority=MATLAB code

The entity priorities have a role in prioritization of events in the Event Calendar which schedules
events to be executed.

In SimEvents, the Event Calendar sorts events based on their times and associated entity priorities as
follows:

1 The event that has the earliest time executes first.
2 If two entities have events occurring at the same time, the event with the entity of higher priority

occurs first.
3 If both entities have the same priority, either event may be served first. To service the entities in

a deterministic order, change one of the entity priorities.

For example, assume a forward event is associated with an entity that exits block A and enters block
B. The priority of this event is the priority of the entity being forwarded. If there are two entities
trying to depart a block at the same time, the entity with the higher priority departs first.

For more information about Event Calendar and debugging SimEvents models, see “Debug
SimEvents Models” on page 12-2.

See Also
Entity Generator | Discrete Event Chart | MATLAB Discrete Event System

Related Examples
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29

More About
• “Entities in a SimEvents Model”
• “Model Resource Allocation Using Composite Entity Creator Block” on page 1-44

1 Working with Entities

1-36

Inspect Structures of Entities
You can inspect entity structures using these methods:

• On a signal line, using the Signal Hierarchy Viewer (for more information, see “Display Entity
Types” on page 1-37).

• In a block at run-time, using the Storage Inspector.

Display Entity Types
To show entity types in your model, in the model editor, right-click a line and select Signal
Hierarchy. The Signal Hierarchy Viewer interactively displays about entities, signals, and bus
objects. For more information on the Signal Hierarchy Viewer, see “Display Bus Hierarchy”.

If you have configured any blocks to receive an entity structure that the preceding block does not
provide, upon compilation, the software automatically displays entity types. This behavior helps you
to troubleshoot the mismatch in entity structures before simulation. The software displays an
approximate list of the entity types and attributes. Use this as a guideline and not as a definitive list.

If entities on two separate paths have the same structure throughout the model, you can use the
same entity type for both entity paths.

If you now modify the second Entity Generate block path to change data2 to data3, the structure of
entities on the second path becomes unique. You must specify a new entity type name for the second
Entity Generator block.

 Inspect Structures of Entities

1-37

Inspect Entities at Run Time
To inspect entities at run-time, use the Storage Inspector. Inspect entities, batched entities, and their
attribute values in a block.

1 In a SimEvents model, use the Simulink Simulation Stepper to step through the model.
2 As you step through the model, each block with entities updates to contain a magnifying glass.
3 To display entity details, including attributes, click the magnifying glass.

4 To see the number of entities, hover over the magnifying glass.

Alternatively, use the SimEvents Debugger to inspect entities. For more information, see SimEvents
Debugger.

See Also
Entity Generator | SimEvents Debugger

More About
• “Working with Entity Attributes and Entity Priorities” on page 1-32
• “Entities in a SimEvents Model”
• “Role of Entity Ports and Paths”

1 Working with Entities

1-38

Generate Entities Carrying Nested Data Structures
This example shows how to investigate the throughput of a vehicle service facility using the Simulink
Type Editor to create nested data structures carried by entities.

The facility has three service stations represented by three Entity Server blocks. The vehicles arriving
at the facility are queued and then directed to one of the three service stations based on their size
and mileage. It is assumed that the older vehicles require more service time.

1 Create entities that represent vehicles arriving at a service facility. The entities carry data
representing the vehicle dimensions and properties as nested bus objects. Vehicle dimensions
include vehicle height and width in meters and vehicle properties include its age and current
mileage.

a On the Modeling tab, in the Design gallery, select Type Editor.
b In the toolstrip of the Type Editor, in the Add section, click Bus to create a Simulink.Bus

object.
c Set Name to Dimensions.
d With the Bus object selected, click Bus Element twice to create two

Simulink.BusElement objects. Name them Height and Width.
e Create another Bus object and set its Name property to Properties. Add three

BusElement objects named Station, Year, and Mileage.
f Create another Bus object and set its Name property to Vehicle.
g Add two BusElement objects and set their Name properties to VehicleDimensions and

VehicleProperties. For their Data type properties, use the Bus: <object name>
template, replacing <object name> with Dimensions and Properties, respectively.

 Generate Entities Carrying Nested Data Structures

1-39

2 Add an Entity Generator block. Double-click the Entity Generator block.

a Select the Entity type tab. Set the Entity type to Bus object and Entity type name as
Vehicle.

Vehicle is the bus object created by the Type Editor.
b Select the Event actions tab. In the Generate action field, enter:

% Vehicle Dimensions
entity.VehicleDimensions.Height = 1+rand();
entity.VehicleDimensions.Width = 1+rand();
% Vehicle Properties
entity.VehicleProperties.Year = randi([1996 2018]);
entity.VehicleProperties.Mileage = randi([50000 150000]);

The vehicles arrive at the facility with random dimensions and properties.
3 Add an Entity Queue block and rename it Vehicle Queue.

a In the 'Main tab, set the Capacity to Inf.
b Select the Event actions tab. In the Entry action field, enter this code to specify service

station selection for vehicles.
% If the height and width of the vehicle are greater than 1.5 m, select Station 1.
if entity.VehicleDimensions.Width > 1.5 && entity.VehicleDimensions.Height > 1.5
 entity.VehicleProperties.Station = 1;
% Else, if the vehicle's mileage is greater than 90000 km, select Station 2.
else if entity.VehicleProperties.Mileage > 90000
 entity.VehicleProperties.Station = 2;
% If the vehicle's mileage is less than 90000 km, select Station 3.
else
 entity.VehicleProperties.Station = 3;
end
end

The vehicles are queued to be directed to the correct service station and vehicle dimensions
and properties are used to select the appropriate service station.

4 Add an Entity Output Switch block.

1 Working with Entities

1-40

a Set the Number of output ports to 3.
b Set the Switching criterion to From attribute.
c Set the Switch attribute name to VehicleProperties.Station.

The Entity Output Switch block directs the vehicles to the stations based on the specified
Station attribute.

5 Add an Entity Server block that represents the service station. Rename the block Service Station
1.

a In the Main tab, set the Service time source to MATLAB action.
b In the Service time action field, enter:

if entity.VehicleProperties.Year > 2015
 dt = 1;
else
 dt = 5;
end

It is assumed that the vehicle service time is longer for older vehicles.
c In the Statistics tab, select Number of entities departed, d statistic and connect it to a

scope.
6 Connect Service Station 1 to an Entity Terminator block.
7 Follow the same steps to create Service Station 2 and Service Station 3 and connect them as

shown.
8 Increase the simulation time to 100 and run the simulation.

Observe the number of vehicles served at Service Station 1.

 Generate Entities Carrying Nested Data Structures

1-41

Observe the number of vehicles served at Service Station 2.

Observe the number of vehicles served at Service Station 3.

1 Working with Entities

1-42

See Also
Entity Generator | Entity Server | Entity Queue | Entity Output Switch

More About
• “Entities in a SimEvents Model”
• “Adjust Entity Generation Times Through Feedback” on page 1-24
• “Generate Entities When Events Occur” on page 1-13
• “Inspect Structures of Entities” on page 1-37

 Generate Entities Carrying Nested Data Structures

1-43

Model Resource Allocation Using Composite Entity Creator
Block

The goal of this example is to show how to use Composite Entity Creator block for resource
allocation. You can combine entities from different paths using the Composite Entity Creator block.
The entities that you combine, called composite entities, might represent different parts within a
larger item, such as the header, payload, and trailer that are parts of a data packet. Alternatively, you
can model resource allocation by combining an entity that represents a resource with an entity that
represents a part or other item.

The Composite Entity Creator block detects when all necessary component entities are present and
when the composite entity that results from the combining operation will be able to advance to the
next block. The Composite Entity Creator block provides options for managing information (attributes
and timers) associated with the component entities. You can also configure the Composite Entity
Creator block to make the combining operation reversible via the Composite Entity Splitter block.

See Also
Entity Generator | Composite Entity Creator | Composite Entity Splitter

More About
• “Entities in a SimEvents Model”

1 Working with Entities

1-44

Replicate Entities on Multiple Paths
The Entity Replicator block enables you to distribute copies of an entity on multiple entity paths.
Replicating entities might be a requirement of the situation you are modeling. For example, copies of
messages in a multicasting communication system can advance to multiple transmitters or multiple
recipients.

Similarly, copies of computer jobs can advance to multiple computers in a cluster so that the jobs can
be processed in parallel on different platforms.

In some cases, replicating entities is a convenient modeling construct.

Modeling Notes
• Unlike the Entity Output Switch block, the Entity Replicator block has departures at all of its

entity output ports that are not blocked, not just a single selected entity output port.
• If your model routes the replicates such that they use a common entity path, then be aware that

blockages can occur during the replication process. For example, if you have this scenario:

• An Entity Replicator block has the Replicas depart from parameter set to Separate output
ports.

• The block has these output ports connected to individual Entity Server blocks.

A blockage can occur because the servers can accommodate at most one of the replicates at a
time. The blockage causes fewer than the maximum number of replicates to depart from the
block.

• Each time the Entity Replicator block replicates an entity, the copies depart in a sequence whose
start is determined by the Hold original entity until all replicas depart parameter. Although
all copies depart at the same time instant, the sequence might be significant in some modeling
situations. For details, see the reference page for the Entity Replicator block.

See Also
Entity Generator | Entity Replicator

More About
• “Entities in a SimEvents Model”

 Replicate Entities on Multiple Paths

1-45

Measure Point-to-Point Delays
Determine how long each entity takes to advance from one block to another, or how much time each
entity spends in a particular region of your model. To compute these durations, you can measure time
durations on each entity that reaches a particular spot in the model. A general workflow is:

1 Create an attribute on the entity that can hold the time value.
2 When the entity reaches a particular point in the model, set the current value of time on the

attribute. Call a Simulink function that contains a Digital Clock block.
3 When the entity reaches the destination, compute the time interval by passing the attribute value

to another Simulink function that compares it to the current simulation time.

Basic Example Using Timer Blocks
This example lets you see if a FIFO order or prioritized queue for customers results in a shorter wait
time. The startTimer and readTimer Simulink functions jointly perform the timing computation.
This example uses the Mean block from the DSP System Toolbox™ to calculate average times.

This example has four Simulink Function blocks. Two define timer functions, startTimer and
readTimer. The other functions calculate average times.

1 In a new model, drag the blocks shown in the example and relabel and connect them as shown.
2 For the startTimer block, define:

1 Working with Entities

1-46

3 For the readTimer block, define:

4 For the avg_time_fifo(t) and avg_time_prioritySimulink Function blocks, insert a Mean
block, for example:

5 For the Entity Generator block:

a In the Entity type tab, add two attributes, ServiceTime and Timer.
b In the Entity actions tab, set the two attribute values:

entity.ServiceTime = exprnd(3);
entitySys.priority = randi(2);

6 In Entity Queue:

a In the Main tab, set Queue type to FIFO.
b In the Event actions tab, call the startTimer function for the Entry action:

entity.Timer = startTimer();
7 In Entity Queue1:

a In the Main tab, configure the block to be a priority queue with a priority source of
entitySys.priority:

 Measure Point-to-Point Delays

1-47

b In the Event actions tab, call the startTimer function for the Entry action:

entity.Timer = startTimer();

8 For both Entity Server blocks:

a Set Service time source to Attribute.
b Set Service time attribute name to ServiceTime.

9 For Entity Terminator, call the readTimer and avg_time_fifo functions for the Entry event:

% Read timer
elapsedTime = readTimer(entity.Timer);

% Compute average
avg_time_fifo(elapsedTime);

10 For Entity Terminator1, call the readTimer and avg_time_priority functions for Entry event:

% Read timer
elapsedTime = readTimer(entity.Timer);

% Compute average
avg_time_priority(elapsedTime);

11 Save and run the model.

1 Working with Entities

1-48

See Also
Entity Generator | Entity Replicator | Simulink Function

More About
• “Entities in a SimEvents Model”

 Measure Point-to-Point Delays

1-49

Modeling Queues and Servers

• “Model Basic Queuing Systems” on page 2-2
• “Broadcast Entities Using Entity Multicasting” on page 2-16
• “Use Queue Event Actions to Model a Storage Tank” on page 2-20
• “Task Preemption in a Multitasking Processor” on page 2-24
• “Model Server Failure” on page 2-27
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29

2

Model Basic Queuing Systems
This example shows how to model basic queueing systems in a discrete-event simulation using the
Entity Queue and Entity Server blocks.

The Entity Queue block stores entities for a length of time that cannot be determined in advance. An
everyday example of a queue is people waiting in line for a store register. A shopper cannot
determine in advance how long they must wait to complete their purchase. You can use Entity Queue
in different applications such as Airplanes waiting to access a runway or messages waiting to be
transmitted. The Entity Queue block has storage capacity, entity sorting policy, and entity overwriting
policy. Based on these parameters, the block attempts to output entities depending on whether the
downstream block accepts new entities.

The Entity Server block stores entities for a length of time, called the service time, then attempts to
send the entity depending on whether the downstream block accepts new entities. During the service
period, the block is serving the entity that it stores. An everyday example of a server is a person (such
as a bank teller or a retail cashier) with whom you perform a transaction with a projected duration.

This example presents basic queuing models that show how to:

• Model FIFO queue, LIFO queue, and Priority Queue.
• Specify entity overwriting policies when the queue reaches capacity.
• Customize and vary entity service times.
• Assign and change entity attributes based on events.
• Understand queue length statistics during simulation.

Sort Entities Using the Entity Queue Block

This model shows how to sort entities by changing the queue sorting policy. The Entity Queue block
supports three message sorting policies:

• Last-in-first-out (LIFO) — The newest entity in the storage departs first.
• First-in-first-out (FIFO) — The oldest entity in the storage departs first.
• Priority — Entities are sorted based on their priority. You can only use the priority queue when the

Overwrite the oldest element if queue is full check box is cleared.

The model below shows four different entity sorting behaviors: FIFO, LIFO, Priority in ascending
order, and Priority in descending order.

2 Modeling Queues and Servers

2-2

Four identical Entity Generator blocks generate 10 entities each. Each block uses a repeating
sequence pattern for entity intergeneration time dt.

 Model Basic Queuing Systems

2-3

After generating 10 entities, the intergeneration time dt is set to infinity to stop generating entities.
In the Entity Generator block, in the Intergeneration time action field, this code is used.

persistent SEQ;
persistent idx;
if isempty(SEQ)
 % Generate 10 entites with 1 second intervals.
 SEQ = [1 1 1 1 1 1 1 1 1 1];
 idx = 1;
end
if idx > numel(SEQ)
 % Stop entity generation after generating 10 entities.
 dt = inf;
else
 dt = SEQ(idx);
end

The block generates an entity and it specifies the attribute Attribute1 on each entity. You can use
attributes to represent features or properties of entities. In this example, the first entity carries a
value of 1, and each generated entity's attribute value increases by 1. To achieve this behavior, in the
Entity Generator block, in the Event actions tab, in the Generate action field, this code is used.

% Pattern: Repeating Sequence
persistent SEQ1;
persistent idx1;
if isempty(SEQ1)
 SEQ1 = [1 2 3 4 5 6 7 8 9 10];
 idx1 = 1;
end
if idx1 <= numel(SEQ1)
 entity.Attribute1 = SEQ1(idx1);
end
idx1 = idx1 + 1;

The generated entities are forwarded to the four Entity Queue blocks. In order to show the sorting
behavior, the Entity Queue blocks are connected to four identical Entity Gate blocks configured as
release gates. A release gate allows one entity to pass when it receives an entity carrying a positive
(greater than 0) value from its control port. The gates block entities for the first 10 seconds and store
them in the queue. After the first 10 seconds, the gates allow one entity to pass per second based on
the sorting policy.

Simulate the model. Open the Simulation Data Inspector and observe that the entities departing from
each Entity Queue block are sorted based on the queue sorting policy.

• The first plot shows entities departing from the queue with a FIFO policy. The first entity with
Attribute value 1, departs from the queue when the gate opens at time 11. Subsequent entities
depart the queue in the same order of their generation, with increasing attribute value.

• The second plot shows entities departing from the queue with a LIFO policy. This policy reverses
the entity departure sequence starting with the entity carrying the largest attribute value.

• The third plot shows entities departing from a priority queue that sorts entities based on their
attributes in ascending order instead of their order of entry to the queue. The entity carrying the
smallest attribute value departs first. Subsequent entities follow the same policy.

2 Modeling Queues and Servers

2-4

• The fourth plot shows the entities departing from a priority queue that sorts entities based on
their attributes in descending order. The entity with the largest attribute value departs first and
the rest of the entities follow the same policy.

 Model Basic Queuing Systems

2-5

Queue Entity Overwriting Policies

2 Modeling Queues and Servers

2-6

You can specify what Entity Queue block does when the block reaches its capacity by setting the
entity overwriting policy. Specify the policy by selecting or clearing the Overwrite the oldest
element if queue is full check box.

• If the Overwrite the oldest element if queue is full check box is cleared, the block does not
accept new entities when the queue is full. This is a blocking queue behavior.

• If the Overwrite the oldest element if queue is full check box is selected, the block is set to
always accept an incoming entity by overwriting the oldest entity in the storage. The block
overwrites the oldest entity, but the entity departing the block is determined by the queue sorting
policy.

In this model, two identical Entity Generator blocks generate entities every 1 second. The entities are
forwarded to two Entity Queue blocks each with a capacity of 10 and a FIFO entity sorting policy.
However, the Blocking Queue is configured to not accept new entities when its queue is full, while the
Overwriting Queue is configured to overwrite the oldest entity when its queue is full. Blocking Queue
and Overwriting Queue are connected to two identical Entity Server blocks, each with a service time
value of 25 seconds. The entity generation rate of the Entity Generator block is much higher than the
service rate of Entity Server block. This difference causes entities to accumulate in the Entity Queue
block.

Simulate the model and open the Sequence Viewer block. Observe that the Entity Generator 1 and
Entity Generator 2 blocks initially generate entities with data values of 0.8147, and the entities are
forwarded to Entity Server 1 and Entity Server 2. Both Entity Generator blocks generate a second set
of entities with data values of 0.9058, which are stored in the Blocking Queue and Overwriting
Queue because both Entity Server blocks are full. The rest of the generated entities are also stored in
the Entity Queue blocks.

 Model Basic Queuing Systems

2-7

Observe that Entity Queue 1 block stops accepting new entities to its storage the time 11. However,
Entity Queue 2 allows the new entity with attribute 0.9706 to storage and overwrites the oldest
existing entity, which has a data value of 0.9058.

Customize Entity Service Time

In a basic queuing system, you can use an Entity Server block to model delays based on the processes
in your system. You can determine the source that specifies the delay by changing the Service time
source parameter of the Entity Server block.

This example shows four different sources you can use based on your application:

• Dialog — You can define a constant service time value. In the first modeling pattern, entities are
delayed for 2 seconds. The block then attempts to forward entities to the next block.

• Signal port — An incoming Simulink® signal determines the service time. In the second
modeling pattern, the block uses ramp signal values as the service time source.

2 Modeling Queues and Servers

2-8

• Attribute — A specified entity attribute value determines the service time. In the third modeling
pattern, each entity carries Attribute1 with value 4 which is the service time source.

• MATLAB action — You can enter MATLAB™ code in the Service time action field and assign
the variable to dt, which is the parameter the model uses as service time. In the fourth modeling
pattern, the random service time dt = rand(1,1); is used, and the code sets a random service
time value that is uniformly distributed between 0 and 1.

Simulate the Model and Review Results

Simulate the model and observe the Simulation Data Inspector, which displays entities forwarded by
the Entity Server block.

 Model Basic Queuing Systems

2-9

Build a Simple Queuing System to Change Entity Attributes

You can attach attributes to entities to represent their features. In a queueing system, you can use
actions as responses to events and change entity attributes. For instance, you can change the value of
an entity attribute when the entity enters and exits the Entity Queue block. In the Entity Queue block,
in the Event actions tab, you can see the set of events for which you can create actions.

2 Modeling Queues and Servers

2-10

Suppose you want to model a customer service system in a bank branch. The branch has two bank
tellers, each assigned a particular transaction type. Customers arrive at the branch. They pick a
number for their transaction and they are directed to the correct bank teller. Customers leave the
branch after the transaction is complete.

In this example, customer arrivals are modeled by an Entity Generator block. The customers are
assumed to arrive with constant interarrival times, and the Period is 1. Each generated entity is
attached an attribute TransactionType to represent the customer requests. The
TransactionType|is initialized as |0 because the transaction is unknown before the
customers enter the branch.

The waiting room is represented by an Entity Queue block. When a customer enters the waiting
room, they are given a number for the corresponding bank teller. This action is represented by
changing the entity attributes in the event actions of the Entity Queue block. Below is the action
invoked by the entity entry event to the Entity Queue block.

 Model Basic Queuing Systems

2-11

Analyze Queue Length Using Statistics and Logical Queues

You can use queue statistics to analyze and understand the behavior of a queue in your simulation.
Specifically, you can measure:

• The number of entities departed from a queue to a downstream block.
• The number of entities at a specific simulation time.
• The average wait of the entities in the queue before departing the block.
• The average queue length or number of entities extracted from the queue by the Entity Find

block.

Understanding these statistics can give insight about your model's behavior. For more information
about queue statistics, see “Interpret SimEvents Models Using Statistical Analysis” on page 5-2.

This example presents two different methods for visualizing and understanding queue length.

To determine whether a queue is storing any entities, you can output the statistics that correspond to
the number of entities stored in a block.

To output statistics follow these simple steps.

1 Enable the n output signal from the queue block. In the block dialog box, on the Statistics tab,
select the Number of entities in block, n check box.

2 From the Sinks library in the Simulink library set, insert a Scope block into the model. Connect
the n output port of the queue block to the input port of the Scope block.

The scope shows if the queue is empty.

For more information about visualizing queue statistics, see “Explore Statistics and Visualize
Simulation Results”.

Partition a Queue to Understand Queue Length

2 Modeling Queues and Servers

2-12

You can partition a queue to understand more details about the queue length and behavior during
simulation.

Suppose that you want to determine what proportion of the time the queue length exceeds 10 for a
queue with a capacity of 100. You can investigate this by using a pair of queues connected in series.
The queues have lengths of 90 and 10. Together they represent a queue with a capacity of 100.

Partitioning the original queue into two smaller queues allows you to gather statistics related to one
of the smaller queues. For example, you can view the queue length statistic for the Entity Queue
block of with a capacity of 90. If there are entities accumulated in the queue with a capacity of 90, in
means that the queue with a capacity of 10 is full. Thus, determining the proportion of the time that
the queue with a capacity of 100 has minimum 10 entities is equivalent to determining the proportion
of time the queue length of the queue with a capacity of 90 is greater than 0.

Simulate the model. Observe that the Entity Queue Capacity 90 block outputs the Number of
entities in block, n. Observe that in certain time intervals entities are stored in the block, which
indicates that the queue with a capacity of 10 is full.

 Model Basic Queuing Systems

2-13

To visualize the proportion of time that the queue with a capacity of 10 is full, the statistic signal is
further processed and compared to zero.

2 Modeling Queues and Servers

2-14

See Also
Entity Queue | Entity Server

Related Examples
• “Overview of Queues and Servers in Discrete-Event Simulation”
• “Broadcast Entities Using Entity Multicasting” on page 2-16
• “Use Queue Event Actions to Model a Storage Tank” on page 2-20
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29

 Model Basic Queuing Systems

2-15

Broadcast Entities Using Entity Multicasting

This example shows how to broadcast entities using Entity Multicast and Multicast Receive Queue
blocks. Use entity multicasting when you want to copy and broadcast entities to a single receiver or
multiple receivers in your model. One common application is creating communication networks in
which messages are copied and transmitted between network nodes. For more information see
“Model an Ethernet Communication Network with CSMA/CD Protocol” on page 3-22.

Build a Simple Model to Broadcast Entities

In this model, an Entity Generator block generates entities. The entities are then queued in the Entity
Queue block with FIFO sorting policy. The entities are sent wirelessly to the receiver and further
processed by the Entity Server block.

To broadcast entities:

• An Entity Multicast block is connected to the output of the Entity Queue block. The broadcasted
entities are tagged such that only Multicast Receive Queues with a matching tag A can receive
them.

2 Modeling Queues and Servers

2-16

• The Entity Receive Queue block is configured to receive entities with tag A.

Simulate the Model with Single Receiver and Review Results

Simulate the model. Open the Data Inspector that displays the received and processed entities that
depart the Process Entity 1 block.

 Broadcast Entities Using Entity Multicasting

2-17

Use Multicast Tag to Send Entities to Multiple Receivers

You can further modify the model such that the multicast mode enables multiple queues to receive
the same set of entities from the Entity Multicast block. You can achieve this behavior by creating
multiple Multicast Receive Queue blocks whose Multicast tag parameter is set to A.

To open the model, use this code:

open_system('ParallelEntityQueueServerPairMulticastModel');

2 Modeling Queues and Servers

2-18

Simulate the Model with Multiple Receivers and Review Results

In this case, Broadcast Entities block copies the entity and sends them to the receivers. Simulate the
model to observe its behavior. Open the Data Inspector that displays the same set of entities
processed by Processed Entities 1 and Processed Entities 2 blocks.

See Also
Entity Queue | Entity Server

Related Examples
• “Overview of Queues and Servers in Discrete-Event Simulation”
• “Use Queue Event Actions to Model a Storage Tank” on page 2-20
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29

 Broadcast Entities Using Entity Multicasting

2-19

Use Queue Event Actions to Model a Storage Tank

This example shows how to use Entity Queue block event actions, a Simulink Function block, and an
Entity Gate block to model a bottle storage system with a limited capacity.

This example uses Entity Generator, Entity Queue, Entity Server, and Entity Terminator blocks to
model an assembly line for a bottle storage system with a limited weight capacity. The Entity
Generator block represents the arrival of the bottles. Each bottle has a gallons attribute, whose
value ranges from 0 and 10, to indicate the amount of liquid it carries. The Entity Queue block
represents the storage with limited capacity. The Entity Server block represents the processing of the
bottles before they leave the facility.

A fluid storage control system is deployed by using a Simulink Function block and an Entity Gate
block to allow bottles to enter the storage system as long as total stored gallon amount is less than 50
gallons. This amount corresponds to the maximum allowed weight the storage can support. It is
assumed that the bottle weight is negligible. The Entity Gate block has two states: open and closed.
The Simulink Function block monitors the amount of liquid in the storage and controls the state of
the Entity Gate block.

Construct the Fluid Storage Control System using Queue Event Actions

The goal of constructing the Fluid Storage Control System is to allow bottles to enter the queue's
storage as long as the total storage gallon amount does not exceed 50 gallons.

To construct the Fluid Storage Control System:

• A Simulink Function block is used with the function signature
check_capacity(value,direction) to control the Entity Gate block. When the block sends a
message with value 1, the Enable Gate opens to allow containers into the storage. Otherwise,
when the block sends a message with value 0, the gate remains closed.

• In the Entity Queue block, in the Entry action and Exit action fields,
check_capacity(entity.gallons,1) and check_capacity(entity.gallons,-1) send
the container gallon value to the Simulink Function block. The second input of
check_capacity(~,~) function takes value 1 when an entity enters the queue and -1 when an
entity exits the queue.

2 Modeling Queues and Servers

2-20

• In the Simulink Function block, a MATLAB Function block creates the logic to control the gate.
The block accepts three inputs.

1 v is the value of the gallon attribute for each entity that enters or exits the block.
2 direction takes value 1 or -1 to indicate if an entity enters or exits the block.
3 myLimit is the capacity of the liquid container in gallons.

• The MATLAB Function block has two outputs.

1 y takes the value 1 to open the gate, when there is enough storage, and 0 otherwise.
2 t is the number of gallons of liquid in the storage.

• The MATLAB Function block contains the following logic to open and close the gate.

function [y,t] = fcn(v,d,myLimit)
% Initialize the persistent variable total that represents the total
% number of gallons of liquid in the storage.
persistent total
% Initialize the variable total.
if isempty(total)
 total = 0;
end
% Add or subtract the gallons carried by the entering or exiting
% entity. d is 1 if the entitiy enters the storage and -1 otherwise.
total = total + d*v;
% Update total number of gallons in the storage.
t = total;
% Compare the total value with myLimit. Containers can have maximum 10
% gallons of liquid.
if total > (myLimit-10)
 % Keep the gate closed.
 y = 0;
else
 % Open the gate to allow containers.
 y = 1;
end
end

 Use Queue Event Actions to Model a Storage Tank

2-21

Simulate the Model and Review Results

Simulate the model. Observe the number of containers in the liquid storage.

Also, observe the amount of liquid in the storage throughout the simulation, which does not exceed
50 gallons.

See Also
Entity Queue | Entity Server

2 Modeling Queues and Servers

2-22

Related Examples
• “Overview of Queues and Servers in Discrete-Event Simulation”
• “Broadcast Entities Using Entity Multicasting” on page 2-16
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29

 Use Queue Event Actions to Model a Storage Tank

2-23

Task Preemption in a Multitasking Processor

This example shows how to force service completion in an Entity Server block using functionality
available on the block Preemption tab.

Example Model for Task Preemption

The example shows preemption(replacement) of low priority tasks by a high priority task in a
multitasking processor. In the model, the Entity Server block represents the task processor presented
with a capacity to process multiple concurrent tasks.

Model Behavior and Results
The following graphic shows how the model generates both low and high priority tasks.

• The top and bottom Entity Generator randomly generate entities that represent high and low
priority tasks, respectively. Both blocks use the exprnd function to generate random entities. The
top block uses exprnd(3), the bottom uses exprnd(1), which requires the Statistics and
Machine Learning Toolbox license.

• The Entity Input Switch block merges the paths of the new low priority tasks with previously
preempted tasks that are returning from the task processor (server).

2 Modeling Queues and Servers

2-24

• The Simulink Function block runs the getCurrentTime function to start a timer on the low
priority tasks. When preemption occurs, a downstream Simulink Function block determines the
remaining service time of the preempted tasks.

• The Entity Output Switch block merges the paths of the high and low priority tasks. Tasks on the
merged path proceed for processing.

An Entity Server block represents a multitasking processor with capacity for multiple tasks.

When preemption occurs, causing the Entity Server block to complete immediately service of all low
priority tasks, one of the two Simulink Function blocks calculates the elapsed time of each departing
task using the recordPreferredWaitTimes and recordNonPreferredWaitTimes functions. The
two Entity Terminator blocks calls these Simulink Function to calculate the elapsed times.

If the elapsed time of a departing task is less than the service time of the Entity Server block,
meaning that preemption forced the task to depart the server early, the Output Switch block feeds the
task back to reenter the server. If the elapsed time in the Simulink Function getCurrentTime block
is equal to the service time of the Entity Server block, the server has completed the full service time
on the task. The entity terminates in the Entity Terminator block.

The Dashboard Scope block shows the simulation results.

The plot displays wait time for high an low priority tasks. It can be observed that wait time of high
priority tasks is significantly decreased.

 Task Preemption in a Multitasking Processor

2-25

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29
• “Model Server Failure” on page 2-27

More About
• “Overview of Queues and Servers in Discrete-Event Simulation”

2 Modeling Queues and Servers

2-26

Model Server Failure
In this section...
“Server States” on page 2-27
“Use a Gate to Implement a Failure State” on page 2-27

Server States
In some applications, it is useful to model situations in which a server fails. For example, a machine
breaks down and later is repaired, or a network connection fails and later is restored. This section
explores ways to model failure of a server, and server states.

Server blocks do not have built-in states, so you can design states in any way that is appropriate for
your application. Some examples of possible server states are in this table.

Server as Communication
Channel

Server as Machine Server as Human Processor

Transmitting message Processing part Working
Connected but idle Waiting for new part to arrive Waiting for work
Unconnected Off Off duty
Holding message (pending
availability of destination)

Holding part (pending
availability of next operator)

Waiting for resource

Establishing connection Warming up Preparing to begin work

Use a Gate to Implement a Failure State

For any state that represents a server inability or refusal to accept entity arrivals even though the
server is not necessarily full, a common implementation involves an Entity Gate block preceding the
server.

The gate prevents entity access to the server whenever the gate control message at the input port at
the top of the block carries zero or negative values. The logic that creates the control message
determines whether the server is in a failure state. You can implement such logic using the Simulink
Function block, using a Message Send block, or using Stateflow® charts to transition among a finite
number of server states.

This example shows an instance in which an Entity Gate block precedes a server. The example is not
specifically about a failure state, but the idea of controlling access to a server is similar. It models a
stochastically occurring failure that lasts for some amount of time.

 Model Server Failure

2-27

Note: The gate prevents new entities from arriving at the server but does not prevent the current
entity from completing its service. If you want to eject the current entity from the server upon a
failure occurrence, then you can use the preemption feature of the server to replace the current
entity with a high-priority 'placeholder' entity.

See Also
Entity Queue | Entity Server

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29
• “Task Preemption in a Multitasking Processor” on page 2-24

More About
• “Overview of Queues and Servers in Discrete-Event Simulation”

2 Modeling Queues and Servers

2-28

Serve High-Priority Customers by Sorting Entities Based on
Priority

This example shows how to minimize the time required to serve high-priority customers by using a
priority queue and Entity Input Switch and Entity Output Switch blocks. Customers are served based
on their service priorities. In this example, two types of customers enter a queuing system. One type
represents high-priority customers with high urgency. The second type of customers are lower
priority and are served with less urgency. The priority queue places high-priority customers ahead of
low-priority customers.

Build the Model

In the model, arriving customers are represented by Entity Generator and Entity Generator1.

• In the Entity Generator block, customer inter arrival times are generated from an exponential
distribution with a mean of 3.

• The Entity Generator block generates entities that have attributes, priority and start time.
The priority attribute is set to 1, which is the service urgency of the customer. The start
time attribute is also set to 1, which initializes the start time value used in the model.

• Similarly, Entity Generator1 generates entities whose inter arrival times are generated from an
exponential distribution with a mean of 1. The entities have the same attributes, priority and
start time. The priority attribute is set to 2 which is the service urgency of the customer.
The start time attribute is set to 1.

The Entity Output Switch block accepts entities generated by the Entity Generator and the Entity
Generator1 blocks and forwards them to the priority queue.

The Entity Queue block represents the queueing of the customers and prioritizes them based in their
service urgency.

• The Capacity of the Entity Queue block is 25.

 Serve High-Priority Customers by Sorting Entities Based on Priority

2-29

• Queue type is set to Priority to sort the entities based on their priority values.

• Priority source is set to priority, which is the attribute used to sort the entities.

• Sorting direction is set to Ascending. Entities with lower values of priority are placed at the
front of the queue. In this setup, The customers with priority value of 1 are prioritized over the
customers with a value of 2.

The Simulink Function block is used to timestamp the entities that enter the Entity Queue block.

• In the Entity Queue block, in the Event actions tab, in the Entry action, the following code is
used so that every time an entity enters the block, the getCurrentTime() Simulink function is
called.

2 Modeling Queues and Servers

2-30

entity.starttime = getCurrentTime();

In the Simulink Function block, a Digital Clock block is used to timestamp the entity entering the
Entity Queue block.

The Entity Server block represents the service the customer receives.

The Entity Output Switch block output the entities for departure.

• Switching criterion is set to From attribute, which selects the departure path based on an
entity attribute.

• Switch attribute name is set to priority. If the priority value is 1, the block switches to
output port 1 and if the priority value is 2, the block switches to output port 2 for entity
departure.

 Serve High-Priority Customers by Sorting Entities Based on Priority

2-31

When an entity enters the Entity Terminator block, the
recordHighPriorityWaitTimes(starttime) function is called to calculate the time spent
between an entity's arrival at the Entity Queue block and its departure from the Entity Terminator
block.

• In the Entity Terminator block, in the Event actions tab, in the Entry, the
recordHighPriorityWaitTimes(starttime) function is called.

• The input argument of the function is startime, which is the timestamp that was recorded when
the entity entered the Entity Queue block.

• The Simulink Function block takes this argument and calculates the difference between the start
time and departure time.

2 Modeling Queues and Servers

2-32

• Similarly, the recordLowPriorityWaitTimes(starttime) function calculates the time for the
low-priority entities.

• The calculated total service time is displayed by a Dashboard Scope block.

Simulate Model and Review Results

The simulation time of the model is set to 100.

Simulate the model and observe the results displayed in the Dashboard Scope block. The block shows
that the waiting time for high-priority customers is significantly less than the low-priority customers.

 Serve High-Priority Customers by Sorting Entities Based on Priority

2-33

See Also
Entity Queue | Entity Server | Entity Output Switch | Entity Input Switch | Simulink Function

Related Examples
• “Model Basic Queuing Systems” on page 2-2
• “Task Preemption in a Multitasking Processor” on page 2-24
• “Model Server Failure” on page 2-27

More About
• “Overview of Queues and Servers in Discrete-Event Simulation”

2 Modeling Queues and Servers

2-34

Routing Techniques

• “Route Vehicles Using an Entity Output Switch Block” on page 3-2
• “Control Output Switch with Event Actions and Simulink Function” on page 3-5
• “Match Entities Based on Attributes” on page 3-7
• “Role of Gates in SimEvents Models” on page 3-9
• “Enable a Gate for a Time Interval” on page 3-11
• “Modeling Message Communication Patterns with SimEvents” on page 3-15
• “Build a Shared Communication Channel with Multiple Senders and Receivers” on page 3-17
• “Model an Ethernet Communication Network with CSMA/CD Protocol” on page 3-22

3

Route Vehicles Using an Entity Output Switch Block

This example shows how to route vehicles to two different pumps in a gas station by controlling an
Entity Output Switch block.

In the example, vehicles are generated by an Entity Generator block, which represents vehicle
arrival. After their arrival, vehicles are routed to two different gas pumps using an Entity Output
Switch block. A Simulink Function block controls the selected output port of the Entity Output Switch
block. The vehicle's departure from the Entity Generator block invokes the Simulink Function block.

Control Entity Output Switch Block

• In the Entity Output Switch Block, set the Switching Criterion to From control port.

• In the Simulink Function block, use a Uniform Random Number block to generate random
numbers between 1 and 2.

• The generated random number is rounded to the integers 1 or 2 by the Round block.

• The integer value of the signal is converted to a message by the Message Send block.

• The output value from the Simulink Function block corresponds to the selected output of the
Entity Output Switch block.

3 Routing Techniques

3-2

Simulate Model and Review Results

Simulate the model and observe that 14 vehicles use Gas Pump1 and 16 vehicles use Gas Pump2.

 Route Vehicles Using an Entity Output Switch Block

3-3

See Also
Entity Output Switch | Entity Generator | Entity Server | Entity Terminator

More About
• “Control Output Switch with Event Actions and Simulink Function” on page 3-5
• “Match Entities Based on Attributes” on page 3-7

3 Routing Techniques

3-4

Control Output Switch with Event Actions and Simulink
Function

In this section...
“Control Output Switch with a Simulink Function Block” on page 3-5
“Specify an Initial Port Selection” on page 3-6

This example shows how to change the selected output port of an Entity Output Switch block to route
entities along different paths where a path is selected on a per-entity basis, not on a predetermined
time schedule.

Control Output Switch with a Simulink Function Block
The following example illustrates a scenario in which the Entity Output Switch block is controlled by
the Simulink Function block.

1 Double-click the function signature on the Simulink Function block and enter SwitchCtrl().
2 Double-click the Simulink Function block. Add a Repeating Sequence Stair block, and set its

Sample time parameter to -1 (inherited), a Message Send block and an Out1 block. Connect the
blocks as shown.

3 In the Repeating Sequence Stair block, set the Vector of output values to [3 2 1].

When the Simulink Function block executes, it outputs the next number from a repeating
sequence and Message Send block outputs message values 3, 2, or 1 based on the sequence of
values specified in the Repeating Sequence Stair block.

4 In the Entity Server block, in the Exit action field enter this code.

SwitchCtrl();

When service in the Entity Server block is complete, the entity exits the block and advances to the
Entity Output Switch block. The departure of the entity from the Entity Server block calls the

 Control Output Switch with Event Actions and Simulink Function

3-5

SwitchCtrl() function which activates the Simulink Function block. Then the output message of
the Simulink Function block determines which output port the entity uses when it departs the Entity
Output Switch block.

Specify an Initial Port Selection
When the Entity Output Switch block uses an input message, the block might attempt to use the
message before its first sample time hit. If the initial value of the message is out of range (for
example, it is unavailable). You should then specify the initial port selection in the Entity Output
Switch block's dialog box. To achieve this, you can follow these steps.

1 In the Entity Output Switch, select From control port as the Switching criterion.
2 Set Initial port selection to the desired initial port. The value must be an integer between 1

and Number of output ports. The Entity Output Switch block uses Initial port selection until
the first control port message arrives.

See Also
Entity Input Switch | Entity Output Switch | Entity Replicator | Entity Gate

Related Examples
• “Route Vehicles Using an Entity Output Switch Block” on page 3-2
• “Serve High-Priority Customers by Sorting Entities Based on Priority” on page 2-29
• “Model Traffic Intersections as a Queuing Network” on page 5-13
• “Enable a Gate for a Time Interval” on page 3-11

More About
• “Role of Entity Ports and Paths”
• “Role of Gates in SimEvents Models” on page 3-9

3 Routing Techniques

3-6

Match Entities Based on Attributes

This example shows how to build a model to store and match entities representing bicycle
components. The model uses an Entity Store block for storage and an Entity Selector block to match
a set of bicycle wheels to the corresponding size frame for assembly.

Produce Bicycle Frames and Wheels

Suppose that you are modeling an assembly line that produces bicycles sized small, medium, and
large. Each bicycle is manufactured by matching the set of wheels to the corresponding size frame.
The wheels are produced at a facility. The frames are ordered from a supplier and they arrive at the
facility ready to assemble. Given this arrangement, frame arrival rate is slower than the wheel
production rate, and the set of wheels are stored in a bin.

In the model:

• The Bicycle Frame Block generates Frame with Period 5 to represent slow arrival rate of bicycle
frames. A Frame can be of size 1, 2, or 3, and each Frame carries an attribute FrameSize that
represents its size.

• The Raw Wheel Material Block generates Wheel with Period 1. Each Wheel carries a WheelSize
attribute that represents the size of each generated wheel. The initial value of WheelSize is set
to 0.

• In the Produce Wheels with Various Size block, wheels are set to size 1, 2, or 3.

• The Entity Store block is named Store Wheels in a Bin and it stores the processed wheels.

• The Entity Selector block is named Match Wheels to Frames and it matches 'WheelSize' to the
corresponding 'FrameSize'.

Simulate the Model and Review Results

Simulate the model. Open the Simulation Data Inspector. Observe that, for the bicycle assembly, the
size of the set of wheels and the frames are exactly matched by the Entity Selector block. Although
the wheels are generated faster, they are stored in the Entity Store block, and they wait to be
matched to the arriving frames for assembly.

 Match Entities Based on Attributes

3-7

See Also
Entity Store | Entity Selector | Entity Server | Entity Gate | Composite Entity Creator

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-5
• “Enable a Gate for a Time Interval” on page 3-11

More About
• “Working with Entity Attributes and Entity Priorities” on page 1-32
• “Role of Entity Ports and Paths”
• “Role of Gates in SimEvents Models” on page 3-9

3 Routing Techniques

3-8

Role of Gates in SimEvents Models
In this section...
“Overview of Gate Behavior” on page 3-9
“Gate Behavior” on page 3-9

Overview of Gate Behavior
By design, certain blocks change their availability to arriving entities depending on the
circumstances. For example,

• A queue or server accepts arriving entities as long as it is not already full to capacity.
• An input switch accepts an arriving entity through a single selected entity input port but forbids

arrivals through other entity input ports.

Some applications require more control over whether and when entities advance from one block to
the next. A gate provides flexible control via its changing status as either open or closed: by
definition, an open gate permits entity arrivals as long as the entities would be able to advance
immediately to the next block, while a closed gate forbids entity arrivals. You configure the gate so
that it opens and closes under circumstances that are meaningful in your model.

For example, you might use a gate

• To create periods of unavailability of a server. For example, you might be simulating a
manufacturing scenario over a month long period, where a server represents a machine that runs
only 10 hours per day. An enabled gate can precede the server, to make the server's availability
contingent upon the time.

• To make departures from one queue contingent upon departures from a second queue. A release
gate can follow the first queue. The gate's control input determines when the gate opens, based on
decreases in the number of entities in the second queue.

• With the First port that is not blocked mode of the Entity Output Switch block. Suppose
each entity output port of the switch block is followed by a gate block. An entity attempts to
advance via the first gate; if it is closed, then the entity attempts to advance via the second gate,
and so on.

Gate Behavior
The Entity Gate block offers these fundamentally different kinds of gate behavior:

• The enabled gate, which uses a control port to determine time intervals over which the gate is
open or closed

• The release gate, which uses a control port to determine a discrete set of times at which the gate
is instantaneously open. The gate is closed at all other times during the simulation.

Tip Many models follow a gate with a storage block, such as a queue or server.

See Also
Entity Input Switch | Entity Output Switch | Entity Replicator | Entity Gate

 Role of Gates in SimEvents Models

3-9

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-5
• “Enable a Gate for a Time Interval” on page 3-11

More About
• “Role of Entity Ports and Paths”

3 Routing Techniques

3-10

Enable a Gate for a Time Interval
In this section...
“Behavior of Entity Gate Block in Enabled Mode” on page 3-11
“Sense an Entity Passing from A to B and Open a Gate” on page 3-11
“Control Joint Availability of Two Servers” on page 3-13

Behavior of Entity Gate Block in Enabled Mode
The Entity Gate block uses a control signal at the input port at the top of the block to determine when
the gate is open or closed:

• When an entity with a positive payload arrives at the enable port at the top of the block, the gate
is open and an entity can arrive as long as it would be able to advance immediately to the next
block.

• When an entity with zero or negative payload arrives at the enable port at the top of the block, the
gate is closed and no entity can arrive.

Because that incoming signal can remain positive for a time interval of arbitrary length, an enabled
gate can remain open for a time interval of arbitrary length. The length can be zero or a positive
number.

Depending on your application, the gating logic can arise from time-driven dynamics, state-driven
dynamics, a SimEvents block's statistical output signal, or a computation involving various types of
signals. To see the ready-to-use common design patters including the Entity gate block, see
“SimEvents Common Design Patterns”.

Sense an Entity Passing from A to B and Open a Gate
This example shows how to use the Sense an Entity Passing from A to B and Open a
Gate design pattern. In this example, the Step block generates a step signal at time 4. This signal
passes through the Message Send block A. The Entity Replicator block duplicates the entity and
passes it to B. It uses the original entity to trigger an event-based entity to enable the Entity Gate
block.

 Enable a Gate for a Time Interval

3-11

1 In a new model, drag the blocks shown in the example and relabel and connect them as shown.
For convenience, start with the Sense an Entity Passing from A to B and Open a
Gate design pattern.

2 In the Step block, set the Step time parameter to 4.
3 In the A (Message Send) block, select the Show enable port check box. Selecting this check box

lets the Step block signal enable the A block to send a message to the Entity Replicator block.
4 In the Entity Generatorblock, in the Entity type tab:

a Name the entity type Entity.
b Add an attribute named Capacity with an initial value of 0.

5 In the Entity Queue block, in the Statistics tab, select Number of entities in block, n.
6 Save and run the model. Observe the number of entities passing through the gate and the

number of entities in the queue at time 4.

3 Routing Techniques

3-12

Control Joint Availability of Two Servers

Suppose that each entity undergoes two processes, one at a time, and that the first process does not
start if the second process is still in progress for the previous entity. Assume for this example that it is
preferable to model the two processes using two Single Server blocks in series rather than one Single
Server block whose service time is the sum of the two individual processing times; for example, you
might find a two-block solution more intuitive or you might want to access the two Single Server
blocks' utilization output signals independently in another part of the model.

If you connect a queue, a server, and another server in series, then the first server can start serving a
new entity while the second server is still serving the previous entity. This does not accomplish the
stated goal. The model needs a gate to prevent the first server from accepting an entity too soon, that
is, while the second server still holds the previous entity.

See Also
Entity Input Switch | Entity Output Switch | Entity Replicator | Entity Gate | Message Send

 Enable a Gate for a Time Interval

3-13

Related Examples
• “Control Output Switch with Event Actions and Simulink Function” on page 3-5

More About
• “Role of Entity Ports and Paths”
• “Role of Gates in SimEvents Models” on page 3-9

3 Routing Techniques

3-14

Modeling Message Communication Patterns with SimEvents

This example shows how to create common communication patterns using SimEvents®. In message-
based communication models, you can use SimEvents® to model and simulate middleware, and
investigate the effects of communication and the environment on your distributed architecture.

The systems in this example represent common communication patterns created by using
SimEvents® blocks that can be used to simulate various network types, such as cabled or wireless
communication, and channel behavior such as failure, or packet loss.

The communication patterns involve:

• Merging messages from multiple senders.
• Broadcasting messages to multiple receivers.
• Distributing work to multiple receivers.
• Multicasting messages among multiple senders and multiple receivers.
• Running a component based on message availability and data.
• Delaying messages for a set amount of time.

To create more complex networks and channel behavior, use combinations of these simple patterns.

By using these patterns, you can model:

• N -to- n communication with multiple senders and receivers with an ideal channel with
communication delay. For an example, see “Build a Shared Communication Channel with Multiple
Senders and Receivers”.

 Modeling Message Communication Patterns with SimEvents

3-15

• N -to- n communication with channel failure and packet loss. For an example, see “Model Wireless
Message Communication with Packet Loss and Channel Failure”.

• An N -to- n Ethernet communication network with an inter-component communication protocol.
For an example, see “Model an Ethernet Communication Network with CSMA/CD Protocol”.

3 Routing Techniques

3-16

Build a Shared Communication Channel with Multiple Senders
and Receivers

This example shows how to model communication through a shared channel with multiple senders
and receivers by using Simulink® messages, SimEvents®, and Stateflow®.

For an overview about messages, see “Simulink Messages Overview”.

In this model, there are two software components that send messages and two components that
receive messages. The shared channel transmits messages with an added delay. SimEvents® blocks
are used to create custom communication behavior by merging the message lines, and copying and
delaying messages. A Stateflow chart is used in a send component to send messages based on a
decision logic.

Create Components to Send Messages

In the model, there are two software components that output messages, Send and StateflowSend.

In the Send component, the Sine Wave block is the signal source. The block generates a sine wave
signal with an amplitude of 1. The sample time for the block is 0.1. The Send block converts the
signal to a message that carries the signal value as data. The Send component sends messages to
Send Buffer 1.

In the StateflowSend component, another Sine Wave block generates a sine wave signal and a Noise
block injects noise into the signal. The Noise block outputs a signal whose values are generated from
a Gaussian distribution with mean of 0 and variance of 1. The sample time of the block is 0.1.

 Build a Shared Communication Channel with Multiple Senders and Receivers

3-17

The Stateflow chart represents a simple logic that filters the signal and decides whether to send
messages. If the value of the signal is greater than 0.5 for a duration greater than 0.1, then the
chart sends a message that carries the signal value. If the signal value is below 0, then the chart
transitions to the ReceiveSignal state. The StateflowSend component sends messages to Send
Buffer 2.

For more information about creating message interfaces, see “Establish Message Send and Receive
Interfaces Between Software Components”.

Create Components to Receive Messages

In the model, there are two software components that receive messages, Receive and Listener.

In the Receive component, a Receive block receives messages and converts the message data to
signal values.

In the Listener component, there is a Simulink Function block. The block displays the function,
onOneMessage(data), on the block face.

3 Routing Techniques

3-18

When a message arrives at Receive Buffer 2, the Listener block is notified and it takes the argument
data, which is the value from the message data, as the input signal. In the block, data values are
multiplied by 2. The block outputs the new data value.

Routing Messages using SimEvents®

In the shared channel, the message paths originating from the two message-sending components are
merged to represent a shared communication channel.

A SimEvents® Entity Input Switch block merges the message lines. In the block:

• Number of input ports specifies the number of message lines to be merged. The parameter
value is 2 for two message paths.

• Active port selection specifies how to select the active port for message departure. If you select
All, all of the messages arriving at the block are able to depart the block from the output port. If
you select Switch, you can specify the logic that selects the active port for message departure.
For this example, the parameter is set to All.

A SimEvents® Entity Server block is used to represent message transmission delay in the shared
channel. In the block:

• Capacity is set to 1, which specifies how many messages can be processed at a time.

 Build a Shared Communication Channel with Multiple Senders and Receivers

3-19

• Service time value is set to 1, which specifies how long it takes to process a message

A SimEvents® Entity Replicator block is used to generate identical copies of messages. In the block:

• Replicas depart from specifies if the copies leave the block from separate output ports or the
same output port as the original messages. The parameter is set to Separate output ports.

• Number of replicas is set to 1, which specifies the number of copies generated for each
message.

• Hold original entity until all replicas depart holds the original message in the block until all of
its copies depart the block.

A SimEvents® Entity Terminator block is used to model Receive Buffer 2. In the block:

• Under the Event actions tab, in the Entry action field, you can specify MATLAB code that
performs calculations or Simulink® function calls that are invoked when the message enters the
block. In this example, onOneMessage(entity) is used to notify the Simulink Function block in
the Listener component. To visualize the function call, under Debug tab, select Information
Overlays and then Function Connectors.

Simulate the Model and Review Results

Simulate the model. Observe that the animation highlights the messages flowing through the model.
You can turn off the animation by right-clicking on the model canvas and setting Animation Speed to
None.

When you pause the animation, a magnifying glass appears on the blocks that store messages. If you
point to the magnifying glass, you see the number of messages stored in the block.

3 Routing Techniques

3-20

To observe which messages are stored in the block, click the magnifying glass to open the Storage
Inspector. For instance, the graphic below illustrates the messages stored in Send Buffer 1.

Turn the animation off and open the Sequence Viewer block to observe the Simulink Function calls
and the flow of messages in the model.

For instance, observe the simulation time 0, during which a message carrying value 0 is sent from the
Send component to Send Buffer 1. From simulation time 0.1 to 0.5, the Send component keeps
sending messages to Send Buffer 1 with different data values. At time 0.5, the StateflowSend
component sends a message to Send Buffer 2. For more information about using the Sequence Viewer
block, see “Use the Sequence Viewer to Visualize Messages, Events, and Entities”.

 Build a Shared Communication Channel with Multiple Senders and Receivers

3-21

Model an Ethernet Communication Network with CSMA/CD
Protocol

This example shows how to model an Ethernet communication network with CSMA/CD protocol using
Simulink® messages and SimEvents®. In the example, there are three computers that communicate
through an Ethernet communication network. Each computer has a software component that
generates data and an Ethernet interface for communication. Each computer attempts to send the
data to another computer with a unique MAC address. An Ethernet interface controls the interaction
between a computer and the network by using a CSMA/CD communication protocol. The protocol is
used to respond to collisions that occur when multiple computers send data simultaneously. The
Ethernet component represents the network and the connection between the computers.

Software Components

In the model, each software component generates data (payload) and combines the data, its size, and
its destination into a message. Then, the message is sent to the Ethernet interface for
communication.

In each Software Component subsystem:

• A MATLAB Function block generates data with a size between 46 and 1500 bytes [1].

• A Constant block assigns destination addresses to data.

• A Bus Creator block converts the Data, PayloadSize, and DestAddress signals to a nonvirtual
bus object called dataPacket.

• A Send block converts dataPacket to a message.

• An Outport block sends the message to the Ethernet interface for communication.

3 Routing Techniques

3-22

Each computer generates data with a different rate. You can change the data generation rate from
the sample time of the MATLAB Function block.

To learn the basics of creating message send and receive interfaces, see “Establish Message Send
and Receive Interfaces Between Software Components”.

Ethernet Interface

Double-click Ethernet Interface 1. Observe that you can specify the Station ID and Transmission
buffer capacity.

The Ethernet Interface subsystems have three main parts:

1 Assemble Ethernet Frame — Converts an incoming message to an Ethernet (MAC) frame.
2 Transmission Buffer — Stores Ethernet frames for transmission.
3 Medium Access Control — Implements a CSMA/CD protocol for packet transmission [2].

 Model an Ethernet Communication Network with CSMA/CD Protocol

3-23

Assemble Ethernet Frame

The Assemble Ethernet Frame blocks convert messages to Ethernet frames by attaching Ethernet-
specific attributes to the message [1].

In the packet assembly process:

• A SimEvents® Entity Replicator block labeled Copy Message copies an incoming message. The
original message is forwarded to a SimEvents® Entity Generator block labeled Assemble MAC
Frame. Because the Entity Generator block Generation method parameter is set to Event-
based, it immediately produces an entity when the original message arrives at the block. A copy
of the message is forwarded to a Simulink Function block with the initPacket() function. The
terms message and entity are used interchangeably between Simulink® and SimEvents®.

• The Simulink Function block transfers the data, its size, and its destination address to the
Assemble MAC Frame block for frame assembly.

• The Assemble MAC Frame block generates the Ethernet frames that carry both Ethernet-specific
attributes and values transferred from the Simulink Function block.

Assemble MAC Frame block calls the initPacket() function as an action that is invoked by each
frame generation event.

3 Routing Techniques

3-24

These are the attributes of the generated Ethernet frame:

• entity.TxAddress is StationID.

• entity.RxAddress, entity.Data, and entity.PayloadSize are assigned the values from
the Simulink Function block.

• entity.TxDelay is the transmission delay. It is defined by the payload size and the bitrate. The
Bitrate parameter is specified by an initialization function in the Model Properties.

• entity.CRC is the cyclic redundancy check for error detection.

Transmission Buffer

The transmission buffer stores entities before transmission by using a first-in-first-out (FIFO) policy.
The buffer is modeled by a Queue block.

The capacity of the queue is determined by the Transmission buffer capacity parameter.

Medium Access Control

The Medium Access Control blocks are modeled by using six SimEvents® blocks.

• An Entity Gate block labeled Admit 1 Frame is configured as an enabled gate with two input ports.
One input port allows frames from the Transmission Buffer block. The other input port is called
the control port, which accepts messages from the CSMA/CD block. The block allows one frame to
advance when it receives a message with a positive value from CSMA/CD block.

• An Entity Input Switch block labeled Merge merges two paths. One input port accepts new frames
admitted by the Admit 1 frame block and the other input port accepts frames for retransmission
that are sent by the CSMA/CD block.

• An Entity Server block labeled Wait for Channel models the back off time of a frame before its
retransmission through the channel.

 Model an Ethernet Communication Network with CSMA/CD Protocol

3-25

• Another Entity Gate block labeled Send to Channel opens the gate to accept frames when the
channel is idle. The channel status is communicated by the CSMA/CD chart.

• An Entity Replicator block labeled Copy Transmitted Frame generates a copy of the frame. One
frame is forwarded to the Ethernet network, and the other is forwarded to the CSMA/CD chart.

• A Discrete-Event Chart block labeled CSMA/CD represents the state machine that models the
CSMA/CD protocol.

CSMA/CD Protocol

The CSMA/CD protocol [2] is modeled by a Discrete-Event Chart block that has two inputs:

• TxIn — Copy of the transmitted frame.

• RxIn — Received frame from the Ethernet network.

The chart has five outputs:

• IsIdle — Opens the Send to Channel gate to accept frames when the value is 1, and closes the
gate when the value is 0.

• TxRe — Retransmitted frame that is forwarded to the Merge block if there is a collision detected
during its transmission.

• TxNext — Opens the Admit 1 Frame gate to accept new frames when the value is 1.

• DataOut — Received data.

• Size — Size of the received data.

3 Routing Techniques

3-26

Transmitting and Receiving Messages

The block is initially in the Standby state and the channel is idle.

If the block is transmitting, after a delay, the block attempts to transmit the message and Isle.data
is set to 0 to declare that the channel is in use.

If the transmission is successful, the block sets TxNext.data to 1 to allow a new message into the
channel and resets to the Standby state.

If there is a collision, the block resends the message after delaying it for a random back off time. n is
the counter for retransmissions. The block retransmits a message a maximum of 16 times. If all of the
retransmission attempts are unsuccessful, then the block terminates the message and allows the
entry of a new message. Then it resets to StandBy.

Similarly, the block can receive messages from other computers. If there is no error, the messages are
successfully received and the block outputs the received data and its size.

Ethernet Hub

The Ethernet component represents the communication network and the cabled connections of the
computers to the network.

 Model an Ethernet Communication Network with CSMA/CD Protocol

3-27

Double-click the Ethernet block to see its parameters.

• Connected stations — These values are assigned to Stations, which is a vector with the station
IDs as elements.

• Length of cables (m) — These values are assigned to CableLength and represent the length of
the cables, in meters, for each computer connected to the hub.

• Packet error rate (PER) — These values are assigned to PER and represent the rate of error in
message transmission for each computer.

• Processing time (s) — These values are assigned to ProcessingTime and it represents the
channel transmission delay.

Three SimEvents® blocks are used to model the Ethernet network. The three computer connections
are merged by using an Entity Input Switch block. An Entity Server block is used to model the
channel transmission delay based on the cable length. An Entity Replicator block copies the
transmitted message and forwards it to the three computers.

3 Routing Techniques

3-28

Simulate the Model and Review the Results

Simulate the model and open the Scope block that displays the average channel utilization. The
channel utilization converges to approximately 0.12.

Open Software Component 1 as a top model and change the data generation rate by setting the
Sample time of the Generate Data 1 block to 0.01. Run the simulation again and observe that the
channel utilization increases to 0.2.

 Model an Ethernet Communication Network with CSMA/CD Protocol

3-29

Connect New Computers to the Network

You can connect more computers to the network.

To add a new computer to the network:

• Copy an existing computer and assign a new ID by double-clicking the Ethernet Interface block. In
this example, new computer has ID 4.

3 Routing Techniques

3-30

• Double-click the Ethernet block and add a station ID, cable length, and packet error rate for the
new computer.

References

1 Ethernet frame - Wikipedia (https://en.wikipedia.org/wiki/Ethernet_frame)

 Model an Ethernet Communication Network with CSMA/CD Protocol

3-31

https://en.wikipedia.org/wiki/Ethernet_frame

2 Carrier-sense multiple access with collision detection - Wikipedia (https://en.wikipedia.org/wiki/
Carrier-sense_multiple_access_with_collision_detection)

3 Routing Techniques

3-32

https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_detection
https://en.wikipedia.org/wiki/Carrier-sense_multiple_access_with_collision_detection

Work with Resources

• “Model Using Resources” on page 4-2
• “Set Resource Amount with Attributes” on page 4-4
• “Group Entities Using Batching” on page 4-6
• “Find and Extract Entities in SimEvents Models” on page 4-10

4

Model Using Resources

In this section...
“Resource Blocks” on page 4-2
“Resource Creation Workflow” on page 4-2

Resource Blocks
Resources are commodities shared by entities in your model. They are independent of entities and
attributes, and can exist in the model even if no entity exists or uses them. Resources are different
from attributes, which are associated with entities and exist or disappear with their entity.

For example, if you are modeling a restaurant, you can create tables and food as resources for
customer entities. Entities can access resources from types of resources.

The SimEvents software supplies the following resource allocation blocks:

Action Block
Acquire resource Resource Acquirer
Define resource Resource Pool
Release resource Resource Releaser

Resource Creation Workflow
1 Specify resources using the Resource Pool block. Define one resource per Resource Pool block.

Multiple Resource Pool blocks can exist in the model with multiple entities sharing the resources.
2 Identify resources to be used with the Resource Acquirer block. You can identify these resources

before specifying them in a Resource Pool block, or select them from the available resources list.
However, the resource definitions must exist by the time you simulate the model. Multiple
Resource Acquire blocks can exist in the model.

3 To release resources, include one or more Resource Releaser blocks. You can configure Resource
Release blocks to release some or all resources for an entity. Alternatively, you can release all
resources for an entity directly using the Entity Terminator block.

Tip To determine how long an entity holds a resource, insert a server block after the Resource
Acquire block. In the Service time parameter, enter how long you want the entity to hold the
resource.

An entity implicitly releases held resources when it:

• Is destroyed.
• Enters an Entity Replicator block and the block creates multiple copies of that entity.
• Is combined with other entities using the Composite Entity Creator block.
• Is split into its component entities using the Composite Entity Splitter block.

4 Work with Resources

4-2

See Also
Resource Acquirer | Resource Pool | Resource Releaser

 Model Using Resources

4-3

Set Resource Amount with Attributes
Use the Selected Resources table of the Resource Acquirer block to receive the resource amount
definition from the block dialog box or an entity attribute. Using attributes as the source for the
resource requires synchronicity between these blocks:

• Entity Generator block with the attribute definition that Resource Acquirer wants to supply the
source amount

• Resource Pool block that defines the resource
• Resource Acquirer block the acquires the resource

This example shows this synchronicity.

1 Open a new model and add Resource Pool, Entity Generator, and Resource Acquirer blocks. For
the Resource Pool block:

• Set Resource name to water.
• Set Resource amount to 20.
• In the Statistics tab, select Amount in use, #u.

2 In the Entity Generator block dialog box, click the Entity type tab and in the Define attributes
table:

• Enter the attribute name, water_amount, to indicate that the attribute defines the amount of
the resource.

• Set the value to 10.
3 In the Resource Acquirer block dialog box, click the Entity type tab and under Available

Resources, select water and move it to the Selected Resources table.
4 In the Selected Resources table, in the water entry:

• For Amount Source, select Attribute.
• For Amount, enter water_amount to match the attribute name defined in the Entity

Generator block.
5 To complete the model, add the following blocks and connect them as shown in the figure:

• Entity Terminator (select the Statistics tab Number of entities arrived, #a check box)
• Two Scope blocks

4 Work with Resources

4-4

6 Simulate the model and observe the amount of resources in use (Scope).

See Also
Resource Acquirer | Resource Pool | Resource Releaser

 Set Resource Amount with Attributes

4-5

Group Entities Using Batching

This example shows how to create, process, and split batched entities using Entity Batch Creator and
Entity Batch Splitter blocks. In the model, an Entity Generator block is used to represent produced
parts in a facility. The parts are batched by an Entity Batch Creator block. A batch is processed by an
Entity Server block. When the processing is complete, the batch is split into individual parts by the
Entity Batch Splitter block for their delivery.

In the model:

• Use an Entity Generator block to generate a Part with two attributes, Color and Customer,
representing color and delivery destination. To generate three different colors and two different
delivery destinations for each Part, in the Event actions tab, in the Generate action field enter
this code. field:

entity.Color = randi([1 3]);
entity.Customer = randi([1 2]);

• Use an Entity Batch Creator block to generate a batch that contains four parts.

• Use an Entity Server block to process and change the color of the third Part in each batch. In the
Event actions tab, in the Entry field enter this code.

entity.batch(3).Color = 5;

• Use an Entity Batch Splitter block to split parts. In the Entry action, use
disp(entity.batch(3).Color) to display the color of the third Part in each processed batch.

• Use an Entity Output Switch block to route a Part to the corresponding customer based on its
Customer attribute.

Simulate Model and Review Results

Simulate the model.

Open the Simulation Data Inspector and observe that the parts are generated with Color values 1, 2,
or 3.

4 Work with Resources

4-6

• Observe that the Diagnostic Viewer displays Color values of the third entity in each batch after
batch processing.

• Scope blocks labeled as For Customer 1 and For Customer 2 display the number of parts delivered
to each customer.

 Group Entities Using Batching

4-7

See Also
Entity Batch Creator | Entity Server | Entity Batch Splitter | Entity Generator | Entity Output Switch

4 Work with Resources

4-8

More About
• “Model Using Resources” on page 4-2
• “Optimize SimEvents Models by Running Multiple Simulations” on page 5-21
• “Find and Extract Entities in SimEvents Models” on page 4-10
• “Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory Blocks”

on page 9-58

 Group Entities Using Batching

4-9

Find and Extract Entities in SimEvents Models
You can find entities in a SimEvents model by using an Entity Find block. The block searches and
finds entities that use a particular resource from a Resource Pool block and acquire it through a
Resource Acquirer block.

You can use the Entity Find block for these applications.

• Model a supply chain to monitor perishable items and update the inventory records. For instance,
you can modify the price of an item when it is closer to its expiration date.

• Model timers and perform actions on products based on timers.
• Model recall of products from a supply chain. You can reroute recalled products back to the supply

chain after repair.

Finding and Examining Entities
The Entity Find block helps you find and examine entities at their location. In this example, the block
finds entities that are tagged with a Resource1 resource from the Resource Pool block. Then, an
additional filtering condition helps to further filter the found entities.

1 Add an Entity Generator block, Resource Pool block, Resource Acquirer block, Entity Server
block, and Entity Terminator block.

The top model represents the flow of entities that acquires a Resource1 resource.
2 In the Entity Terminator block, output the Number of entities arrived, a statistic and connect

to a scope.
3 Add an Entity Find block. Output the Number of entities found, f statistic and connect it to a

scope.

By default, the block finds entities with the Resource1 tag.
4 Add another Entity Generator block and label it Trigger Entity Generator. Connect it to the input

port of the Entity Find block. In the block, change the Entity type name to Trigger and Entity
priority to 100.

Every time the Trigger Entity Generator generates a trigger entity, the Entity Find block is
triggered to find entities.

4 Work with Resources

4-10

Note The entities in the model have priority 300 and the priority of the trigger entity is set to
100 to make trigger entities higher priority in the event calendar. This prevents the termination
of the entities before they are found by the Entity Find block.

5 Simulate the model and observe that the number of terminated entities is 10, which is equal to
the number of found entities by the Entity Find block. Every generated entity acquires a
Resource1 tag and there is no blocking of entities in the model.

The Entity Find block finds entities with the Resource1 resource for every generated trigger
entity.

 Find and Extract Entities in SimEvents Models

4-11

6 In the Entity Generator Block Parameters dialog box, in the Generate action field, add this
code.

entity.Attribute1 = randi([1,2]);

The entities are generated with a random Attribute1 value 1 or 2.
7 In the Entity Find Block Parameters dialog box, select the Additional filtering condition check

box. Add this code to replace any existing code and to set the filtering condition.

match = isequal(trigger.Attribute1, entity.Attribute1);

The block finds the entities that acquire the Resource1 tag when the match is true. That is, the
Attribute1 value of an entity is equal to the trigger entity Attribute1 value.

8 In the Trigger Entity Generator, observe that the Attribute1 value is 1.
9 Simulate the model, observe that the number of found entities decreased to 3 because entities

with the Attribute1 value 2 are filtered out by the additional matching condition.

The trigger entity Attribute1 value is 1. The block finds entities that acquire Resource1 tag
and have the Attribute1 value 1.

4 Work with Resources

4-12

Extracting Found Entities
You can use the Entity Find block to find entities and extract them from their location to reroute. In
this example, 3 entities found in the previous example are extracted from the system to be
terminated.

To open the model, see Extract Found Entities Example.

 Find and Extract Entities in SimEvents Models

4-13

1 In the Entity Find Block Parameters dialog box, select the Extract found entities check box.

Observe that a new output port appears at the Entity Find block for the extracted entities.
2 Connect the output of the Entity Find block to a new Entity Terminator1 block.
3 Output the Number of entities extracted, ex statistic from the Entity Server block and connect

it to a scope.

Visualize the number of extracted entities from the server.
4 Output the Number of entities arrived, a statistic from the Entity Terminator1 block and

connect it to a scope.

The statistic is used to observe the number of found and extracted entities from the system.
5 Simulate the model. Observe that the Number of entities extracted, ex is 3.

4 Work with Resources

4-14

6 Observe that 3 found entities are extracted from the Entity Server block and terminated in the
Entity Terminator1 block.

 Find and Extract Entities in SimEvents Models

4-15

As a result, 7 entities arrive at the Entity Terminator block in the model.

Changing Found Entity Attributes
You can change the attributes of the found entities at their location or with extraction.

1 Change the attributes of found entities at their location by entering MATLAB code in the
OnFound action field of the OnFound event action. For more information about events and
event actions, see “Events and Event Actions” on page 1-2.

2 Change the attributes of found and extracted entities when they enter, exit, or are blocked by the
Entity Find block. Enter MATLAB code in the Entry action, Exit action, and Blocked
action, field of the Event actions tab.

Triggering Entity Find Block with Event Actions
You can trigger the Entity Find block with event actions. In this example, the Entity Find block is
triggered when an entity enters the Entity Server block. Modify the previous example by removing
the Trigger Entity Generator and by adding the Entity Output Switch, Entity Server1, Entity
Terminator2 and Scope blocks to the model and connect them as shown.

4 Work with Resources

4-16

To open the model, see Trigger Entity Find Example.

1 In the Entity Output Switch block, set the Switching criterion to Equiprobable.

Entities flow through the Entity Server and Entity Server1 blocks with equal probability.
2 Replace the Trigger Entity Generator block by a Simulink Function block to trigger Entity Find

block. On the Simulink Function block, double-click the function signature and enter
Trigger(u).

3 In the Simulink Function block, add the Message Send block and connect it to an Out1 block.

The Trigger(u) function call generates a message to trigger the Entity Find block every time
an entity enters the Entity Server1 block.

4 In the Entity Server block, in the Entry action field, enter this code.

Trigger(double(1));

Every entity entry calls the Trigger(u) function in the Simulink Function block that triggers
the Entity Find block.

5 In the Entity Find block, select the Additional filtering condition check box. Enter this code.

match = isequal(2, entity.Attribute1);

Found entities have the Attribute1 value 2.

 Find and Extract Entities in SimEvents Models

4-17

6 Simulate the model. Observe the scope that displays the extracted and terminated entities when
the Entity Find block is triggered by the entity entry to the Entity Server block.

Building a Firewall and an Email Server
You can use the Entity Find block to monitor multiple blocks in a model to examine or extract entities
and modify entity attributes.

This example represents an email server with a firewall to track, monitor, and discard harmful emails
before they reach the user. In the model, emails arrive from the Internet through an Entity Generator
block. In the Firewall component, emails are classified as harmful for instant discarding, suspicious
for monitoring, or safe based on their source. Harmful emails are tagged with a DiscardTag
resource from the Resource Pool block and instantly discarded from the system. Suspicious emails
are tagged with MonitorTag and tracked throughout the system for suspicious activity. If a
suspicious activity is detected, the email is discarded before it reaches the user. Safe emails are not
monitored or discarded.

To open the model, see Email Monitoring Example.

4 Work with Resources

4-18

Build Firewall and Email Server Components

1 Add an Entity Generator block. In the block, set the Entity type name to Email and attach two
attributes as Source and Suspicious with initial value 0.

2 Add an Entity Server block. In the block, select the Event actions tab, and in the Entry action
field enter this code.

entity.Source = randi([1,3]);

The Source attribute value is randomly generated and it is 1 for a suspicious, 2 for a safe, and 3
for a harmful email source.

3 Add an Entity Output Switch block. In the block, set the Number of output ports to 3, the
Switching criterion to From attribute, and the Switch attribute name to Source.

4 Add two Resource Pool blocks and set their Resource name parameters to MonitorTag and
DiscardTag.

5 Add a Resource Acquirer block labeled Tag Emails for Monitoring. In the block, select
MonitorTag as Selected Resources.

6 Add another Resource Acquirer block labeled Tag Emails for Instant Discard. In the block, select
DiscardTag as Selected Resources

7 Add an Entity Input Switch block. In the block, set the Number of input ports to 3.
8 Add an Entity Store block. In the block, select the Event actions tab, and in the Entry action

field enter this code.

InstantDiscard(1);
entity.Suspicious = randi([1,2]);

9 Add an Entity Queue block. In the block, select the Event actions tab, and in the Entry action
field enter this code.

entity.Suspicious = randi([1,2]);

 Find and Extract Entities in SimEvents Models

4-19

The Suspicious attribute of an email changes in the entry. If the Suspicious attribute value is
2, the email is extracted and terminated. This represents the randomly observed suspicious
activity in the system.

10 Add another Entity Server block. In the block, set the Service time value to 3, select the Event
actions tab, in the Entry action field, enter this code.

entity.Suspicious = randi([1,2]);
11 Add an Entity Terminator block labeled Emails Read by User, and connect all the blocks as shown

in the model.

Monitor and Discard Emails with Entity Find Block

1 Add a Simulink Function block.

a Double-click the function signature on the Simulink Function block and enter
InstantDiscard(u).

b Double-click the Simulink Function block. Add a Message Send block and an Out1 block.

2 In the parent model, add an Entity Find block. In the block, set Resource to DiscardTag and
select Extract found entities check box.

Any email entry calls the InstantDiscard() function and triggers the Entity Find block to find
and discard harmful emails.

3 Add another Entity Terminator block labeled Instantly Discarded Emails.
4 Add another Entity Find block. In the block, set the Resource to MonitorTag and select the

Extract found entities and the Additional filtering condition check boxes. In the Matching
condition field, enter this code.

match = isequal(trigger.Attribute1, entity.Suspicious);
5 Add another Entity Generator block labeled Entity Generator1. In the block, set the Period to 5,

the Entity priority to 100, the Entity type name to Trigger, and the Attribute Initial Value
to 2.

6 Add another Entity Terminator block labeled Monitored and Discarded Emails. Connect all the
blocks as shown in the model.

7 Output the Number of entities arrived, a statistic from all of the Entity Terminator blocks, and
connect them to the Scope blocks for visualization.

8 Increase the simulation time to 50 and simulate the model. Observe the emails that are instantly
discarded or discarded after monitoring.

4 Work with Resources

4-20

 Find and Extract Entities in SimEvents Models

4-21

Observe the emails that reach the user after the filtering.

4 Work with Resources

4-22

9 Optionally, visualize the number of extracted emails from any block in the model. For instance, in
the Email Queue, select the Number of entities extracted, ex statistic and connect to a scope.
Observe that six emails are extracted from the queue.

 Find and Extract Entities in SimEvents Models

4-23

See Also
Resource Acquirer | Resource Pool | Resource Releaser

Related Examples
• “Optimize SimEvents Models by Running Multiple Simulations” on page 5-21

More About
• “Model Using Resources” on page 4-2
• “Set Resource Amount with Attributes” on page 4-4

4 Work with Resources

4-24

Visualization, Statistics, and Animation

• “Interpret SimEvents Models Using Statistical Analysis” on page 5-2
• “Visualization and Animation for Debugging” on page 5-11
• “Model Traffic Intersections as a Queuing Network” on page 5-13
• “Optimize SimEvents Models by Running Multiple Simulations” on page 5-21
• “Use the Sequence Viewer to Visualize Messages, Events, and Entities” on page 5-25

5

Interpret SimEvents Models Using Statistical Analysis
In this section...
“Output Statistics for Data Analysis” on page 5-2
“Output Statistics for Run-Time Control” on page 5-2
“Average Queue Length and Average Store Size” on page 5-4
“Average Wait” on page 5-7
“Number of Entities Arrived” on page 5-9
“Number of Entities Departed” on page 5-9
“Number of Entities Extracted” on page 5-9
“Number of Entities in Block” on page 5-9
“Number of Pending Entities” on page 5-9
“Pending Entity Present in Block” on page 5-10
“Utilization” on page 5-10

Choosing the right statistical measure is critical for evaluating the model performance. You can use
output statistics from the SimEvents library blocks for data analysis and run-time control.

Output Statistics for Data Analysis
Consider these statistical measures for more efficient behavior interpretation.

• Identify the appropriate size of the samples to compute more meaningful statistics.
• Decide if you want to investigate the transient behavior, the steady-state behavior, or both.
• Specify the number of simulations that ensures sufficient confidence in the results.

For an example, see “Explore Statistics and Visualize Simulation Results”.

Output Statistics for Run-Time Control
Some systems rely on statistics to influence the dynamics. In this example, a queuing system with
discouraged arrivals has a feedback loop that adjusts the arrival rate throughout the simulation based
on the statistics reported by the queue and the server. To learn more details about this example, see
“Adjust Entity Generation Times Through Feedback” on page 1-24.

5 Visualization, Statistics, and Animation

5-2

A subset of the blocks in SimEvents library provides statistics output for run-time control. When you
create simulations that use statistical signals to control the dynamics, you access the current
statistical values at key times throughout the simulation, not just at the end of the simulation.

This table lists SimEvents blocks that output commonly used statistics for data analysis and run-time
control.

Block
Name

Statistics Parameter
Average
queue
length/
store
size, l

Average
wait, w

Number
of
entities
arrived,
a

Number
of
entities
departe
d, d

Number
of
entities
extract
ed, ex

Number
of
entities
in
block, n

Number
of
pending
entities,
np

Pending
entity
present
in
block,
pe

Utilizati
on, util

Conveyo
r System

Entity
Batch
Creator

Entity
Batch
Splitter

Entity
Find

Entity
Generat
or

Entity
Queue

Entity
Selector

Entity
Server

Entity
Store

Entity
Terminat
or

Multicas
t Receive
Queue

Resourc
e
Acquirer

Resourc
e Pool

 Interpret SimEvents Models Using Statistical Analysis

5-3

The statistical parameters are updated on particular events during the simulation. For example, when
a full N-server advances one entity to the next block, the statistical signal representing the number of
entities in the block assumes the value N-1. However, if the departure causes another entity to arrive
at the block at the same time instant, then the statistical signal assumes the value N. The value of
N-1, which does not persist for a positive duration, is a zero-duration value.. This phenomenon occurs
in many situations.

This table lists the events that update the block statistics.

Statistics Port Updated on Event
Entry Exit Blocked Preempted Extracted

Average queue
length/store
size, l

Average wait, w

Number of
entities arrived,
a

Number of
entities
departed, d

Number of
entities
extracted, ex

Number of
entities in
block, n

Number of
pending
entities, np

Pending entity
present in
block, pe

Utilization, util

Average Queue Length and Average Store Size
The formula to compute average queue length or store size

Average queue length, l is the accumulated time-weighted average queue. To compute Average
queue length, l at time tf, the block:

1 Multiplies the size of the queue n by its duration, t = ti - ti-1, to calculate the time-weighted
queue.

2 Sums over the time-weighted queue and averages it over total time tf.

5 Visualization, Statistics, and Animation

5-4

l = 1
tf
∑

i = 1

f
nt × t

Where:

• t is the time between the entity arrival and / or the number of departure events.
• f is the total number of entity arrival and / or the number of departure events between t0 and tf.
• i = 1 for simulation time t0 = 0 .

Average store size, l is computed similarly by replacing the queue length with the store size.

Average queue length example in the Entity Queue block

This example shows the average queue length of the entities in the Entity Queue block.

Calculate average queue length in the simple queuing system example

The service time for the Entity Server block is larger than the entity intergeneration time of the
Entity Generator block. The entities are queued and sorted in the Entity Queue block. The scope
displays the number of entities.

 Interpret SimEvents Models Using Statistical Analysis

5-5

For the duration between 0 and 1, the average queue length is 0 because the size of the queue is 0.
Between 1 and 2 the queue length is 1. Average queue length at time tf = 2 is calculated as follows.

l = 1
2 ∑i = 1

2
nt × t = 1

2(0 + 1 × 1) = 0.5

The queue size is 2 between the times 2 and 6 for the duration of 4. Average queue length at time tf =
6 is calculated using this equation.

l = 1
6 ∑i = 1

6
nt × t = 1

6(0 + 1 × 1 + 2 × 4) = 1.5

The average queue size is calculated for each duration. The Scope block displays its value for the
duration of the simulation.

5 Visualization, Statistics, and Animation

5-6

Average Wait
The formula to compute average wait

The Average wait, w parameter represents the sum of the wait times for entities departing the block,
divided by their total number, n.

Wait time, wj, is the simulated time that an entity resides within a block. This wait time is not
necessarily equivalent to the time an entity is blocked. It is the duration between an entity's entry
into and exit from a block. For instance, wait time is 1 for an entity that travels through an unblocked
Entity Server with a service time of 1s.

w =
∑

j = 1

n
w j

n

Average wait of entities example in the Entity Server block

This example shows the average wait time for entities that are served in the Entity Server block.

 Interpret SimEvents Models Using Statistical Analysis

5-7

Calculate average wait in the example

The duration of an entity's entry into and exit from the Entity Server block is computed by the
gettime() function in the Simulink Function block.

The Diagnostic Viewer displays the duration between the entry and exit of six consecutive entities.

The Scope block shows the average wait time for each entity departure event from the Entity Server
block. For instance, the wait time for the first entity is 1 and the wait time for the second entity is 2.
The average wait time calculated for the first two entities is 1.5. The plot displays this value at the
simulation time 6. For the first four entities, the sum of the wait times is 10 and the average wait time
at simulation time 12 becomes 2.5.

5 Visualization, Statistics, and Animation

5-8

Number of Entities Arrived
The Number of entities arrived, a parameter outputs the cumulative count for the number of
entities that arrive at the block.

Number of Entities Departed
The Number of entities departed, d parameter outputs the cumulative count for the number of
entities that depart the block.

Number of Entities Extracted
Entity Find block finds entities in a SimEvents model and extracts them from their location to
reroute. The Number of entities extracted, ex parameter outputs the number of entities that are
extracted from a block.

Number of Entities in Block
The Number of entities in block, n parameter outputs the number of entities that are in the block.

Number of Pending Entities
The Number of pending entities, np parameter outputs the number of pending entities the block
has served that have yet to depart.

 Interpret SimEvents Models Using Statistical Analysis

5-9

Pending Entity Present in Block
The Pending entity present in block, pe parameter indicates whether an entity that is yet to
depart is present in the block. The value is 1 if there are any pending entities, and 0 otherwise.

Utilization
The Utilization, util parameter indicates the average time a block is occupied. The block calculates
utilization for each entity departure event, which is the ratio of the total wait time for entities to the
server capacity, C, multiplied by the total simulation time, tf . Utilization for n entities is calculated
using this equation.

util =
∑

j = 1

n
w j

C × tf

References
[1] Cassandras, Christos G. Discrete Event Systems: Modeling and Performance Analysis. Homewood,

Illinois: Irwin and Aksen Associates, 1993.

See Also
Entity Server | Entity Generator | Entity Queue | Multicast Receive Queue | Resource Acquirer |
Entity Terminator

More About
• “Count Entities”
• “Visualization and Animation for Debugging” on page 5-11
• “Explore Statistics and Visualize Simulation Results”

5 Visualization, Statistics, and Animation

5-10

Visualization and Animation for Debugging
In this section...
“Which Debugging Tool to Use” on page 5-11
“Observe Entities with Animation” on page 5-12
“Explore the System Using the Simulink Simulation Stepper” on page 5-12
“Information About Race Conditions and Random Times” on page 5-12

Visualize and animate simulations in SimEvents models using tools available in Simulink and
SimEvents software.

• You can place many Simulink Sink blocks directly on the entity line to observe entities, including
the To Workspace and dashboard scopes.

• If the entity type is anonymous, you can place a Scope block.
• To observe bus or structured type entities, use the Simulation Data Inspector or dashboard

scopes. The Scope and Display blocks do not support buses.

Which Debugging Tool to Use
These tools help you explore various elements of a SimEvents model.

Items to Observe Visualization Tool and Its Purpose
Statistics • Simulation Data Inspector — Show the statistic throughout the

simulation. For more information, see “Analyze Simulation
Results”.

• Simulink To Workspace block — Write the data set to the MATLAB
workspace when the simulation stops or pauses.

• Simulink Scope block — Create a plot using the statistic.
• Simulink Display block — Show the statistic throughout the

simulation.
• Simulink To File block — Write the data set into a MAT-file.
• Simulink Dashboard Scope block — Create a plot using the

statistic.

Entities passing through
model

Entity animation Animation — Highlight active entities in the simulation.
Step of a Simulation Simulink Simulation Stepper — Step forward and back through a

simulation. For more information, see “Step Through Simulation”.
Custom animation Use SimEvents custom visualization API — Create custom observers

of the entities and events in a model. For more information, see “Use
SimulationObserver Class to Monitor a SimEvents Model” on page 10-
2.

Note The Simulink Floating Scope does not support SimEvents models.

Simulation Data Inspector is a unified user interface for viewing both entities and signal (for example,
statistics) data. For more information, see “Analyze Simulation Results”.

 Visualization and Animation for Debugging

5-11

Observe Entities with Animation
During simulation, animation provides visual verification that your model behaves as you expect.
Animation highlights active entities in a model as execution progresses. You can control the speed of
entity activity animation during simulation, or turn off animation. In a model window, right-click and
select Animation Speed.

• Fast
• Medium
• Slow
• None

The Fast animation speed shows the active highlights at each time step. To add delay with each time
step, set the animation speed to Medium or Slow. To turn off the animation, select None.

Explore the System Using the Simulink Simulation Stepper
Simulation Stepper enables you to step through major time steps of a simulation. Use this tool to
explore your discrete-event system. For more information, see “Debug Simulations in the Simulink
Editor”.

Information About Race Conditions and Random Times
You can vary the processing sequence for simultaneous events or make the intergeneration times or
service times random.

See Also
Entity Server | Entity Generator | Entity Queue | Multicast Receive Queue | Resource Acquirer |
Entity Terminator

More About
• “Explore Statistics and Visualize Simulation Results”
• “Count Entities”

5 Visualization, Statistics, and Animation

5-12

Model Traffic Intersections as a Queuing Network

This example shows how to create a SimEvents® model to represent a vehicle traffic network and to
investigate mean waiting time of vehicles when the network is in steady-state.

Suppose a vehicle traffic network consists of two vehicle entry and two vehicle exit points,
represented by brown and green nodes in the next figure. Each blue node in the network represents a
route intersection with a traffic light, and the arrows represent the route connections at each
intersection. The values next to the arrows represent the percentage of vehicles taking the route in
that intersection.

The rate of vehicle entries into the network are represented by the Poisson processes with rates 0.5
for Entry 1 and 0.15 for Entry 2. Service rates represent the time vehicles spend at each
intersection, which are drawn from exponential distribution with mean 1. The arrow values are the
probabilities of choosing a route for vehicles in the intersection.

Model Traffic Network

To represent a vehicle traffic network, this model uses Entity Generator, Entity Server, Entity Queue,
Entity Input Switch, Entity Output Switch, and Entity Terminator blocks.

model = 'QueueServerTransportationNetwork';
open_system(model);

 Model Traffic Intersections as a Queuing Network

5-13

Model Vehicle Arrivals

The two Entity Generator blocks represent the network entry points. Their entity intergeneration
time is set to create a Poisson arrival process.

This is the code in the Intergeneration time action field of the Entry 1 block.

% Random number generation
coder.extrinsic('rand');
ValEntry1 = 1;
ValEntry1 = rand();
% Pattern: Exponential distribution
mu = 0.5;
dt = -1/mu * log(1 - ValEntry1);

In the code, mu is the Poisson arrival rate. The coder.extrinsic('rand') is used because there is
no unique seed assigned for the randomization. For more information about random number
generation in event actions, see “Event Action Languages and Random Number Generation” on page
1-8. To learn more about extrinsic functions, see “Working with mxArrays”.

Model Vehicle Route Selection

Entities have a Route attribute that takes value 1 or 2. The value of the attribute determines the
output port from which the entities depart an Entity Output Switch block.

This code in the Entry action of the Entity Server 1 represents the random route selections of
vehicles at the intersection represented by Node 1.

Coin1 = 1;
coder.extrinsic('rand');
Coin1 = rand;
if Coin1 <= 0.2
 entity.Route = 1;
else
 entity.Route = 2;
end

This is an example of random Route attribute assignments when entities enter the Entity Server 1
block. The value of Route is assigned based on the value of the random variable rand that takes

5 Visualization, Statistics, and Animation

5-14

values between 0 and 1. Route becomes 1 if rand is less than or equal to 0.2, or 2 if rand is greater
than 0.2.

Model Route Intersections

Each blue node represents a route intersection and includes an infinite capacity queue, and a server
with service time drawn from an exponential distribution with mean 1.

Entity Server 1 contains this code.

% Pattern: Exponential distribution
coder.extrinsic('rand');
Val1 = 1;
Val1 = rand();
mu = 1;
dt = -mu * log(1 - Val1);

Calculate Mean Waiting Time for Vehicles in the Network

The network is constructed as an open Jackson network that satisfies these conditions.

• All arriving vehicles can exit the network.
• Vehicle arrivals are represented by Poisson process.
• Vehicles depart an intersection as first-in first-out. The wait time in an intersection is exponentially

distributed with mean 1.
• A vehicle departing the intersection either takes an available route or leaves the network.
• The utilization of each traffic intersection queue is less than 1.

In the steady state, every queue in an open Jackson network behaves independently as an M/M/1
queue. The behavior of the network is the product of individual queues in equilibrium distributions.
For more information about M/M/1 queues, see “M/M/1 Queuing System” on page 6-37.

The vehicle arrival rate for each node is calculated using this formula.

In the formula:

• is the rate of external arrivals for node .
• is the total number of incoming arrows to node .
• is the probability of choosing the node from node .

• is the total vehicle arrival rate to node .

For all of the nodes in the network, the equation takes this matrix form.

Here, is the routing matrix, and each element represents the probability of transition from node to
node .

For the network investigated here, this is the routing matrix.

 Model Traffic Intersections as a Queuing Network

5-15

 is the vector of external arrivals to each node.

Using these values, the mean arrival rate is calculated for each node.

Each node behaves as an independent M/M/1 queue, and the mean waiting time for each node is
calculated by this formula. See “M/M/1 Queuing System” on page 6-37.

Mean waiting time for each node is calculated by incorporating each element of .

View Simulation Results

Simulate the model and observe that the mean waiting time in each queue in the network matches
the calculated theoretical results.

• The waiting time for the queue in node 1 converges to 1.

5 Visualization, Statistics, and Animation

5-16

• The waiting time for the queue in node 2 converges to 0.11.

 Model Traffic Intersections as a Queuing Network

5-17

• The waiting time for the queue in node 3 converges to 0.88.

5 Visualization, Statistics, and Animation

5-18

• The waiting time for the queue in node 4 converges to 0.58.

 Model Traffic Intersections as a Queuing Network

5-19

References

[1] Jackson, James R. Operations research Vol. 5, No. 4 (Aug., 1957), pp 518-521.

5 Visualization, Statistics, and Animation

5-20

Optimize SimEvents Models by Running Multiple Simulations
To optimize models in workflows that involve running multiple simulations, you can create simulation
tests using the Simulink.SimulationInput object.

Grocery Store Model

The grocery store example uses multiple simulations approach to optimize the number of shopping
carts required to prevent long customer waiting lines.

In this example, the Entity Generator block represents the customer entry to the store. The
customers wait in line if necessary and get a shopping cart through the Resource Acquirer block. The
Resource Pool block represents the available shopping carts in the store. The Entity Server block
represents the time each customer spends in the store. The customers return the shopping carts
through the Resource Releaser block, while the Entity Terminator block represents customer
departure from the store. The Average wait, w statistic from the Resource Acquirer block is saved to
the workspace by the To Workspace block from the Simulink® library.

Build the Model
Grocery store customers wait in line if there are not enough shopping carts. However, having too
many unused shopping carts is considered a waste. The goal of the example is to investigate the
average customer wait time for a varying number of available shopping carts in the store. To compute
the average customer wait time, multiple simulations are run by using the sim command. For each
simulation, a single available shopping cart value is used. For more information on the sim command,
see “Run Parallel Simulations”.

In the simulations, the available shopping cart value ranges from 20 to 50 and in each simulation it
increases by 1. It is assumed that during the operational hours, customers arrive at the store with a
random rate drawn from an exponential distribution and their shopping duration is drawn from a
uniform distribution.

 Optimize SimEvents Models by Running Multiple Simulations

5-21

1 In the Entity Generator block, set the Entity type name to Customers and the Time source to
MATLAB action. Then, enter this code.

persistent rngInit;
if isempty(rngInit)
 seed = 12345;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = 1;
dt = -mu*log(1-rand());

The time between the customer arrivals is drawn from an exponential distribution with mean 1
minute.

2 In the Resource Pool block, specify the Resource name as ShoppingCart. Set the Resource
amount to 20.

Initial value of available shopping carts is 20.
3 In the Resource Acquirer block, set the ShoppingCart as the Selected Resources, and set the

Maximum number of waiting entities to Inf.

The example assumes a limitless number of customers who can wait for a shopping cart.
4 In the Entity Server block, set the Capacity to Inf.

The example assumes a limitless number of customers who can shop in the store.
5 In the Entity Server block, set the Service time source to MATLAB action and enter the code

below.

persistent rngInit;
if isempty(rngInit)
 seed = 123456;
 rng(seed);
 rngInit = true;
end

% Pattern: Uniform distribution
% m: Minimum, M: Maximum
m = 20;
M = 40;
dt = m+(M-m)*rand;

The time a customer spends in the store is drawn from a uniform distribution on the interval
between 20 minutes and 40 minutes.

6 Connect the Average wait, w statistic from the Resource Acquirer block to a To Workspace block
and set its Variable name to AverageCustomerWait.

7 Set the simulation time to 600.

The duration of one simulation is 10 hours of operation which is 600 minutes.
8 Save the model.

For this example, the model is saved with the name GroceryStore_ShoppingCartExample.

5 Visualization, Statistics, and Animation

5-22

Run Multiple Simulations to Optimize Resources
1 Open a new MATLAB script and run this MATLAB code for multiple simulations.

a Initialize the model and the available number of shopping carts for each simulation, which
determines the number of simulations.

% Initialize the Grocery Store model with
% random intergeneration time and service time value
mdl = 'GroceryStore_ShoppingCartExample';
isModelOpen = bdIsLoaded(mdl);
open_system(mdl);

% Range of number of shopping carts that is
% used in each simulation
ShoppingCartNumber_Sweep = (20:1:50);
NumSims = length(ShoppingCartNumber_Sweep);

In each simulation, number of available shopping carts is increased by 1.
b Run each simulation with the corresponding available shopping cart value and output the

results.

% Run NumSims number of simulations
NumCustomer = zeros(1,NumSims);
for i = 1:1:NumSims
 in(i) = Simulink.SimulationInput(mdl);
 % Use one ShoppingCartNumber_sweep value for each iteration
 in(i) = setBlockParameter(in(i), [mdl '/Resource Pool'], ...
 'ResourceAmount', num2str(ShoppingCartNumber_Sweep(i)));
end

% Output the results for each simulation
out = sim(in);

c Gather and visualize the results.

% Compute maximum average wait time for the
% customers for each simulation
MaximumWait = zeros(1,NumSims);
for i=1:NumSims
 MaximumWait(i) = max(out(1, i).AverageCustomerWait.Data);
end
% Visualize the plot
plot(ShoppingCartNumber_Sweep, MaximumWait,'bo');
grid on
xlabel('Number of Available Shopping Carts')
ylabel('Maximum Wait Time')

2 Observe the plot that displays the maximum average wait time for the customers as a function of
available shopping carts.

 Optimize SimEvents Models by Running Multiple Simulations

5-23

The plot displays the tradeoff between having 46 shopping carts available for zero wait time
versus 33 shopping carts for a 2-minute customer wait time.

See Also
Entity Server | Entity Generator | Entity Queue | Resource Acquirer | Entity Terminator | Resource
Releaser | Resource Pool

Related Examples
• “Optimization of Shared Resources in a Batch Production Process” on page 6-103
• “Explore Statistics and Visualize Simulation Results”

More About
• “Interpret SimEvents Models Using Statistical Analysis” on page 5-2
• “Count Entities”
• “Visualization and Animation for Debugging” on page 5-11
• “Adjust Entity Generation Times Through Feedback” on page 1-24
• “Save SimEvents Simulation Operating Point” on page 6-4

5 Visualization, Statistics, and Animation

5-24

Use the Sequence Viewer to Visualize Messages, Events, and
Entities

To see the interchange of messages and events between the blocks from the Simulink Messages &
Events library, Stateflow charts in Simulink models, and SimEvents blocks, you can:

• Use the Sequence Viewer tool from the Simulink toolstrip.
• Add a Sequence Viewer block to your Simulink model.

The Sequence Viewer allows you to visualize message transition events and the data that the
messages carry. In the Sequence Viewer, you can view event data related to Stateflow chart execution
and the exchange of messages between Stateflow charts. The Sequence Viewer window shows
messages as they are created, sent, forwarded, received, and destroyed at different times during
model execution. The Sequence Viewer window also displays state activity, transitions, and function
calls to Stateflow graphical functions, Simulink functions, and MATLAB functions.

With the Sequence Viewer, you can also visualize the movement of entities between blocks when
simulating SimEvents models. All SimEvents blocks that can store entities appear as lifelines in the
Sequence Viewer window. Entities moving between these blocks appear as lines with arrows. You can
view calls to Simulink Function blocks and to MATLAB Function blocks.

You can add a Sequence Viewer block to the top level of a model or any subsystem. If you place a
Sequence Viewer block in a subsystem that does not have messages, events, or state activity, the
Sequence Viewer window informs you that there is nothing to display.

For instance, open the Stateflow example sf_msg_traffic_light.

openExample("stateflow/ModelingADistributedTrafficControlSystemUsingMessageExample")

 Use the Sequence Viewer to Visualize Messages, Events, and Entities

5-25

This model has three Simulink subsystems: Traffic Light 1, Traffic Light 2, and GUI. During
simulation, the Stateflow charts in these subsystems exchange data by sending messages. As
messages pass through the system, you can view them in the Sequence Viewer window. The
Sequence Viewer window represents each block in the model as a vertical lifeline with simulation
time progressing downward.

Components of the Sequence Viewer Window
Navigation Toolbar

At the top of the Sequence Viewer window, a navigation toolbar displays the model hierarchy path.
Using the toolbar buttons, you can:

•
 Show or hide the Property Inspector.

• Select an automatic or manual layout.
• Show or hide inactive lifelines.
•

 Save Sequence Viewer settings.
•

 Restore Sequence Viewer settings.
• Configure Sequence Viewer parameters.
• Access the Sequence Viewer documentation.

5 Visualization, Statistics, and Animation

5-26

Property Inspector

In the Property Inspector, you can choose filters to show or hide:

• Events
• Messages
• Function Calls
• State Changes and Transitions

Header Pane

The header pane below the Sequence Viewer toolbar shows lifeline headers containing the names of
the corresponding blocks in a model.

• Gray rectangular headers correspond to subsystems.
• White rectangular headers correspond to masked subsystems.
• Yellow headers with rounded corners correspond to Stateflow charts.

To open a block in the model, click the name in the corresponding lifeline header. To show or hide a
lifeline, double-click the corresponding header. To resize a lifeline header, click and drag its right-
hand side. To fit all lifeline headers in the Sequence Viewer window, press the space bar.

Message Pane

Below the header pane is the message pane. The message pane displays messages, events, and
function calls between lifelines as arrows from the sender to the receiver. To display sender, receiver,
and payload information in the Property Inspector, click the arrow corresponding to the message,
event, or function call.

 Use the Sequence Viewer to Visualize Messages, Events, and Entities

5-27

Navigate the Lifeline Hierarchy
In the Sequence Viewer window, the hierarchy of lifelines corresponds to the model hierarchy. When
you pause or stop the model, you can expand or contract lifelines and change the root of focus for the
viewer.

Expand a Parent Lifeline

In the message pane, a thick, gray lifeline indicates that you can expand the lifeline to see its
children. To show the children of a lifeline, click the expander icon below the header or double-
click the parent lifeline.

For example, expanding the lifeline for the Traffic Light 1 block reveals two new lifelines
corresponding to the Stateflow charts Ped Button Sensor and Controller.

5 Visualization, Statistics, and Animation

5-28

Expand a Masked Subsystem Lifeline

The Sequence Viewer window displays masked subsystems as white blocks. To show the children of a
masked subsystem, point over the bottom left corner of the lifeline header and click the arrow.

For example, the GUI subsystem contains four masked subsystems: Traffic Lamp 1,Traffic Lamp 2,
Ped Lamp 1, and Ped Lamp 2.

You can display the child lifelines in these masked subsystems by clicking the arrow in the parent
lifeline header.

 Use the Sequence Viewer to Visualize Messages, Events, and Entities

5-29

Change Root of Focus

To make a lifeline the root of focus for the viewer, point over the bottom left corner of the lifeline
header and click the arrow. Alternatively, you can use the navigation toolbar at the top of the
Sequence Viewer window to move the current root up and down the lifeline hierarchy. To move the
current root up one level, press the Esc key.

The Sequence Viewer window displays the current root lifeline path and shows its child lifelines. Any
external events and messages are displayed as entering or exiting through vertical slots in the
diagram gutter. When you point to a slot in the diagram gutter, a tooltip displays the name of the
sending or receiving block.

View State Activity and Transitions
To see state activity and transitions in the Sequence Viewer window, expand the state hierarchy until
you have reached the lowest child state. Vertical yellow bars show which state is active. Blue
horizontal arrows denote the transitions between states.

5 Visualization, Statistics, and Animation

5-30

In this example, you can see a transition from Go to PrepareToStop followed, after 1 second, by a
transition to Stop.

To display the start state, end state, and full transition label in the Property Inspector, click the
arrow corresponding to the transition.

To display information about the interactions that occur while a state is active, click the yellow bar
corresponding to the state. In the Property Inspector, use the Search Up and Search Down
buttons to move through the transitions, messages, events, and function calls that take place while
the state is active.

View Function Calls
The Sequence Viewer displays function calls and replies. This table lists the type of support for each
type of function call.

Function Call Type Support
Calls to Simulink
Function blocks

Fully supported.

 Use the Sequence Viewer to Visualize Messages, Events, and Entities

5-31

Function Call Type Support
Calls to Stateflow
graphical or Stateflow
MATLAB functions

• Scoped — Select the Export chart level functions chart option. Use
the chartName.functionName dot notation.

• Global — Select the Treat exported functions as globally visible
chart option. You do not need the dot notation.

Calls to function-call
subsystems

Fully supported and displayed.

Calls from MATLAB
Function block

Supports displaying function call events with the limitation of calls
crossing model reference boundaries.

The Sequence Viewer window displays function calls as solid arrows labeled with the format
function_name(argument_list). Replies to function calls are displayed as dashed arrows labeled
with the format [argument_list]=function_name.

For example, in the model slexPrinterExample, a subsystem calls the Simulink Function block
addPrinterJob. The function block replies with an output value of false.

To open this example, enter:

openExample("stateflow/ShareFcnsAcrossSLandSFExample")

Simulation Time in the Sequence Viewer Window
The Sequence Viewer window shows events vertically, ordered in time. Multiple events in Simulink
can happen at the same time. Conversely, there can be long periods of time during simulation with no
events. As a consequence, the Sequence Viewer window shows time by using a combination of linear
and nonlinear displays. The time ruler shows linear simulation time. The time grid shows time in a
nonlinear fashion. Each time grid row, bordered by two blue lines, contains events that occur at the
same simulation time. The time strip provides the times of the events in that grid row.

5 Visualization, Statistics, and Animation

5-32

To show events in a specific simulation time range, use the scroll wheel or drag the time slider up and
down the time ruler. To navigate to the beginning or end of the simulation, click the Go to first event
or Go to last event buttons. To see the entire simulation duration on the time ruler, click the Fit to
view button .

When using a variable step solver, you can adjust the precision of the time ruler. In the Model
Explorer, on the Main tab of the Sequence Viewer Block Parameters pane, adjust the value of the
Time Precision for Variable Step field.

Redisplay of Information in the Sequence Viewer Window
The Sequence Viewer saves the order and states of lifelines between simulation runs. When you close
and reopen the Sequence Viewer window, it preserves the last open lifeline state. To save a particular

viewer state, click the Save Settings button in the toolbar. Saving the model then saves that

state information across sessions. To load the saved settings, click the Restore Settings button .

You can modify the Time Precision for Variable Step and History parameters only between
simulations. You can access the buttons in the toolbar before simulation or when the simulation is
paused. During a simulation, the buttons in the toolbar are disabled.

See Also
Blocks
Sequence Viewer

Tools
Sequence Viewer

More About
• “Communicate with Stateflow Charts by Sending Messages” (Stateflow)
• “Model Distributed Traffic Control System by Using Messages” (Stateflow)

 Use the Sequence Viewer to Visualize Messages, Events, and Entities

5-33

Learning More About SimEvents
Software

• “Event Calendar” on page 6-3
• “Save SimEvents Simulation Operating Point” on page 6-4
• “Example Model to Count Simultaneous Departures from a Server” on page 6-9
• “Example Model for Noncumulative Entity Count” on page 6-10
• “Adjust Entity Generation Times Through Feedback” on page 6-11
• “A Simple Example of Generating Multiple Entities” on page 6-14
• “A Simple Example of Event-Based Entity Generation” on page 6-15
• “Serve Preferred Customers First” on page 6-16
• “Find and Examine Entities” on page 6-17
• “Extract Found Entities” on page 6-20
• “Trigger Entity Find Block with Event Actions” on page 6-21
• “Build a Firewall and an Email Server” on page 6-22
• “Implement the Custom Entity Storage Block” on page 6-23
• “Implement the Custom Entity Storage Block with Iteration Event” on page 6-24
• “Implement the Custom Entity Storage Block with Two Timer Events” on page 6-25
• “Implement the Custom Entity Generator Block” on page 6-26
• “Implement the Custom Entity Storage Block with Two Storages” on page 6-27
• “Generating and Initializing Entities” on page 6-28
• “M/M/1 Queuing System” on page 6-37
• “M/D/1 Queuing System” on page 6-41
• “G/G/1 Queuing System and Little's Law” on page 6-44
• “Comparing Queuing Strategies” on page 6-48
• “Modeling Hybrid Systems - Tank Filling” on page 6-52
• “Resource Allocation from Multiple Pools” on page 6-56
• “Using Entity Priority to Sequence Departures” on page 6-61
• “Using Custom Visualization for Entities” on page 6-63
• “Selection Server - Select Specific Entities from Server” on page 6-66
• “Flush Entities from a Queue-Server” on page 6-68
• “Server with Pause/Continue” on page 6-71
• “Simulation of a Medical Device” on page 6-73
• “Dining Philosophers Problem” on page 6-78
• “Simulate Scheduler of a Multicore Control System” on page 6-82
• “Develop Custom Scheduler of a Multicore Control System” on page 6-87

6

• “Distributing Multi-Class Jobs to Service Stations” on page 6-95
• “Effects of Communication Delays on an ABS Control System” on page 6-97
• “Aircraft Boarding Process Flow” on page 6-101
• “Optimization of Shared Resources in a Batch Production Process” on page 6-103
• “Modeling a Kanban Production System” on page 6-113
• “Job Scheduling and Resource Estimation for a Manufacturing Plant” on page 6-123
• “Modeling Load Within a Dynamic Voltage Scaling Application” on page 6-138
• “Modeling Machine Failure” on page 6-141
• “Inventory Management” on page 6-146
• “Modeling Cyber-Physical Systems” on page 6-149
• “802.11 MAC and Application Throughput Measurement” on page 6-154
• “802.11ax System-Level Simulation with Physical Layer Abstraction” on page 6-171

6 Learning More About SimEvents Software

6-2

Event Calendar
During a simulation, the model maintains a list, called the event calendar, of upcoming events that
are scheduled for the current simulation time or future times. The event calendar sorts multiple
events that are scheduled for the same time by the priority of the entity for which they are scheduled.
The model refers to the event calendar to execute events at the correct simulation time and in an
appropriately prioritized sequence.

These are the events that the event calendar tracks.

Event For Blocks
Generate Entity Generator, MATLAB Discrete-Event System
Forward Entity Generator, Entity Queue, Multicast Receive Queue, Entity Server,

Entity Terminator, Discrete Event Chart, MATLAB Discrete Event
System, Entity Replicator, Resource Acquirer

ServiceComplete Entity Server
Timer MATLAB Discrete-Event System, Discrete Event Chart
Iterate MATLAB Discrete-Event System
Destroy MATLAB Discrete-Event System

See Also
Entity Generator | Entity Queue | Entity Server | Discrete Event Chart | MATLAB Discrete Event
System | Resource Acquirer

More About
• “Debug SimEvents Models” on page 12-2
• “Visualization and Animation for Debugging” on page 5-11
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-5
• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2

 Event Calendar

6-3

Save SimEvents Simulation Operating Point
This example shows how to save and restore the simulation state of a SimEvents model by using Save
final operating point check box and use it as an initial state for future simulations. For more
information about using Save final operating point, see “Use Model Operating Point for Faster
Simulation Workflow”.

The Save final operating point check box is used to save the state of a simple queuing system with
an Entity Generator block, an Entity Queue block, an Entity Server block, and an Entity Terminator
block. The signal output port n displaying the number of entities departed the Entity Queue block is
connected to a Scope block. For more information about performing basic tasks to create this model,
see “Create a Discrete-Event Model”. The only difference in the model is the placement of the scope.

1 Open the Entity Server Block Parameters dialog box. Set the Service time value to 2.

The queue length increases throughout the simulation because service time is larger than the
entity intergeneration time.

2 From the Simulink Toolstrip, select Modeling tab and Model Settings. In the Configuration
Parameters dialog box, in the Data Import/Export pane, select the Final states check box with
the variable name xFinal and select the Save final operating point check box.

6 Learning More About SimEvents Software

6-4

3 Simulate the model and open the Scope block. Observe that the final queue length is 6.

The queue length increases, with spikes at times 2, 4, 6, 8, and 10 because the Service time
value of the Entity Server block is 2. The entity in the Entity Server block departs, and the entity
that arrives at the Entity Queue block immediately advances to the Entity Server block.

 Save SimEvents Simulation Operating Point

6-5

4 In the Configuration Parameters dialog box, select the Initial state check box and specify the
variable name as xFinal.

xFinal is used as an initial state for the next simulation.

6 Learning More About SimEvents Software

6-6

5 Increase the simulation time to 20.

Set the simulation time larger than 10 to observe simulation with the saved initial simulation
state.

6 Simulate the model. Open the Scope block. Observe that the simulation starts from the queue
length 6, which is the final state of the previous simulation.

 Save SimEvents Simulation Operating Point

6-7

See Also
Entity Generator | Entity Queue | Entity Server | Entity Terminator

Related Examples
• “Solvers for Discrete-Event Systems” on page 7-5
• “Debug SimEvents Models” on page 12-2
• “Manage Entities Using Event Actions”

6 Learning More About SimEvents Software

6-8

Example Model to Count Simultaneous Departures from a
Server

This example shows how to count the simultaneous departures of entities from a server. Use the
Number of entities departed, d statistic from the Entity Server block to learn how many entities
have departed the block. The output signal also indicates when departures occurred. This method of
counting is cumulative throughout the simulation.

 Example Model to Count Simultaneous Departures from a Server

6-9

Example Model for Noncumulative Entity Count

This example shows how to count entities, which arrive to an Entity Terminator block, in a
noncumulative way by resetting the counter at each time instant.

6 Learning More About SimEvents Software

6-10

Adjust Entity Generation Times Through Feedback

This example shows a queuing system in which feedback influences the arrival rate. The goal of the
feedback loop is to stabilize the entity queue by slowing the entity generation rate of the Entity
Generator block as more entities accumulate in the Entity Queue block and the Entity Server block.

The diagram shows a simple queuing system with an Entity Generator, an Entity Queue, an Entity
Server, and an Entity Terminator block. For more information about building this simple queuing
system, see “Create a Discrete-Event Model”.

The capacity of the Entity Server block is 1. This causes an increase in the queue length without
feedback. The goal is to regulate entity intergeneration time based on the size of the queue and the
number of entities waiting to be served.

• In the Entity Generator block, select MATLAB action as the Time source. Add this code to the
Intergeneration time action field.

persistent rngInit;

if isempty(rngInit)
 seed = 12345;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = getAvgInterGenTime();
dt = -mu*log(1-rand());

The entity intergeneration time dt is generated from an exponential distribution with mean mu, which
is determined by the function getAvgInterGenTime().

• In the Entity Queue block, in the Statistics tab, select the Number of entities in block, n and
Average queue length, l as output statistics.

• In the Entity Server block, select MATLAB action as the Service time source. Add this code to
the Service time action field.

 Adjust Entity Generation Times Through Feedback

6-11

persistent rngInit;
if isempty(rngInit)
 seed = 67868;
 rng(seed);
 rngInit = true;
end

% Pattern: Exponential distribution
mu = 3;
dt = -mu*log(1-rand());

The service time |dt| is drawn from an exponential distribution with
mean |3|.

• In the Entity Server block, in the Statistics tab, select the Number of entities in block, n as
output statistics.

• Add a Simulink Function block. On the Simulink Function block, double-click the function
signature and enter y = getAvgInterGenTime().

• In the Simulink Function block:

1 Add two In1 blocks and rename them as numInQueue and numInServer.
2 numInQueue represents the current number of entities accumulated in the queue and

numInServer represents the current number of entities accumulated in the server.
3 Use Add block to add these two inputs.
4 Use a Bias block and set the Bias parameter as 1. The constant bias 1 is to guarantee a nonzero

intergeneration time.

Optionally, select Function Connections from the Information Overlays under the Debug tab to
display the feedback loop from the Simulink Function block to the Entity Generation block.

• In the parent model, connect the Number of entities in block, n statistics from the Entity
Queue and Entity Server blocks to the Simulink Function block.

• Connect a Scope block to the Average queue length, l statistic from the Entity Queue block. The
goal is to investigate the average queue length.

• Increase the simulation time to 10000 and simulate the model.

• Observe that the Average queue length, l in the scope is nonincreasing due to the effect of
feedback for the discouraged entity generation rate.

6 Learning More About SimEvents Software

6-12

 Adjust Entity Generation Times Through Feedback

6-13

A Simple Example of Generating Multiple Entities

In this example, you can simultaneously generate multiple entities at the start of the simulation. You
can then observe the behavior of the model from the output of the Dashboard Scope block.

6 Learning More About SimEvents Software

6-14

A Simple Example of Event-Based Entity Generation

In this example, you generate entities based on the message arrival to the Entity Generator block.

 A Simple Example of Event-Based Entity Generation

6-15

Serve Preferred Customers First

In this example, two types of customers enter a queuing system. One type, considered to be preferred
customers, are less common but require longer service. The priority queue places preferred
customers ahead of nonpreferred customers. The model plots the average system time for the set of
preferred customers and separately for the set of nonpreferred customers in a Dashboard Scope
block.

6 Learning More About SimEvents Software

6-16

Find and Examine Entities

This example shows how to use the Entity Find block to find and examine entities at their location. In
this example, the block finds entities that are tagged with a resource from the Resource Pool block.

Model Description

• The top model represents the flow of entities that acquire a Resource1 resource.

• By default, the Entity Find block finds the entities having Resource1 tag.

• Every time the Trigger Entity Generator generates an entity, the Entity Find block is triggered to
find entities.

Simulation Results

Simulate the model and observe the Scope blocks labeled as Terminated Entities and Number of
Found Entities. The number of terminated entities is 10.

 Find and Examine Entities

6-17

The number of found entities by the Entity Find block is also 10. This is because every generated
entity acquires a Resource1 tag and no entities are blocked in the model.

6 Learning More About SimEvents Software

6-18

You can also modify and extract found entities. For more information, see “Find and Extract Entities
in SimEvents Models” on page 4-10.

See Also
Resource Acquirer | Entity Find | Resource Pool

More About
• “Find and Extract Entities in SimEvents Models” on page 4-10

 Find and Examine Entities

6-19

Extract Found Entities

You can use the Entity Find block to find entities and extract them from their location to reroute. In
this example, 3 entities found in the previous example are extracted from the system to be
terminated.

6 Learning More About SimEvents Software

6-20

Trigger Entity Find Block with Event Actions

You can trigger the Entity Find block with event actions. In this example, the Entity Find block is
triggered when an entity enters the Entity Server block. Modify the previous example by removing
the Trigger Entity Generator and by adding the Entity Output Switch, Entity Server1, Entity
Terminator2 and Scope blocks to the model and connect them as shown.

 Trigger Entity Find Block with Event Actions

6-21

Build a Firewall and an Email Server

You can use the Entity Find block to monitor multiple blocks in a model, to examine, and to extract
entities.

This example represents an email server with a firewall to track, monitor, and discard harmful emails
before they reach the user. In the model, emails are generated using an Entity Generator block. In the
Firewall component, all emails are classified as harmful for instant discarding, suspicious for
monitoring, or safe based on their source. Harmful emails are tagged with a DiscardTag resource
from the Resource Pool block and instantly discarded from the system. Suspicious emails are tagged
with MonitorTag and tracked throughout the system for suspicious activity. If a suspicious activity is
detected, the email is discarded before it reaches the user. Safe emails are not monitored or
discarded.

6 Learning More About SimEvents Software

6-22

Implement the Custom Entity Storage Block

This example shows how to implement a discrete-event System Object™ using a MATLAB Discrete-
Event system block. The model also includes an Entity Generator block and an Entity Terminator
block. The custom block accepts entities and forwards them with a delay of 4.

 Implement the Custom Entity Storage Block

6-23

Implement the Custom Entity Storage Block with Iteration
Event

This example shows how to implement a discrete-event System Object™ which represents a custom
entity storage block with an iteration event. The model also includes an Entity Generator block that
generates Wheels with various Diameter values.

6 Learning More About SimEvents Software

6-24

Implement the Custom Entity Storage Block with Two Timer
Events

This example shows how to implement a discrete-event System Object™ which represents a custom
entity storage block with two timer events. The model also includes an Entity Generator block that
generates entities and two Entity Terminator blocks.

 Implement the Custom Entity Storage Block with Two Timer Events

6-25

Implement the Custom Entity Generator Block

This example shows how to implement a discrete-event System Object™ which represents a custom
entity generator block. The custom generator block also assigns priority values and data to each
generated entity. The priority values are acquired from the incoming signal from the Ramp block. The
model also includes an Entity Terminator block.

6 Learning More About SimEvents Software

6-26

Implement the Custom Entity Storage Block with Two Storages

This example shows how to implement a discrete-event System Object™ which represents a custom
entity storage block with two storages. The model also includes two Entity Generator blocks to
generate two types of entities and an Entity Terminator block.

 Implement the Custom Entity Storage Block with Two Storages

6-27

Generating and Initializing Entities

Description

This example shows different ways to generate and initialize entities and their attribute values.

Periodic Entity Generation and Initialize with MATLAB Code

Generate entities periodically by setting a constant value of intergeneration time in the Entity
Generator. You can then initialize these entities in the Entity Generator using MATLAB code as shown
below.

6 Learning More About SimEvents Software

6-28

 Generating and Initializing Entities

6-29

Randomized Entity Generation and Initialize with Simulink Functions

Generate entities using intergeneration time sampled from a random distribution by writing a custom
intergeneration time action in the Entity Generator block, as shown below.

In this example, initialize the generated entities by calling into a Simulink Function that returns
initial values for attributes as shown below.

6 Learning More About SimEvents Software

6-30

Burst Entity Generation - Generating Multiple Entities Simultaneously

This example shows how you can generate multiple entities simultaneously at the start of simulation
to preload a queue. To generate N entities, the intergeneration time for these entities must be 0
(zero). To stop generation after N entities, set the intergeneration time to infinity (inf).

 Generating and Initializing Entities

6-31

6 Learning More About SimEvents Software

6-32

Event-Based Entity Generation

This example shows how you can generate entities when certain events occur in the model. Each
such event can be translated into a message arrival at the event input port of the Entity Generator.

 Generating and Initializing Entities

6-33

Inter-Arrival Times from Sequence and Initialize from Spreadsheet

This example shows how you can generate entities where the intergeneration times are specified
from a sequence or an array. Use a Repeating Sequence Stair block inside the Simulink Function

Simulink function: getNextFromSequence

6 Learning More About SimEvents Software

6-34

Initialize the generated entities using data from a spreadsheet by importing the data to a MATLAB
table object. Individual columns of this table can then be read by the Repeating Sequence Stair block
in the Simulink Function initFromSpreadsheet.

 Generating and Initializing Entities

6-35

See Also
Entity Generator | Entity Server | Queue | Entity Terminator

Related Examples
• “Create a Discrete-Event Model”
• “Explore Statistics and Visualize Simulation Results”
• “Manage Entities Using Event Actions”

6 Learning More About SimEvents Software

6-36

M/M/1 Queuing System

Overview

This example shows how to model a single-queue single-server system with a single traffic source and
an infinite storage capacity. In the notation, the M stands for Markovian; M/M/1 means that the
system has a Poisson arrival process, an exponential service time distribution, and one server.
Queuing theory provides exact theoretical results for some performance measures of an M/M/1
queuing system and this model makes it easy to compare empirical results with the corresponding
theoretical results.

Structure

The model includes the components listed below:

• Entity Generator block: Models a Poisson arrival process by generating entities (also known as
"customers" in queuing theory).

• Simulink Function exponentialArrivalTime(): Returns data representing the interarrival times
for the generated entities. The interarrival time of a Poisson arrival process is an exponential
random variable.

• Entity Queue block: Stores entities that have yet to be served in FIFO order

• Entity Server block: Models a server whose service time has an exponential distribution.

Results and Displays

The model includes these visual ways to understand its performance:

• Scopes labeled "Waiting Time: Theoretical" and "Waiting Time: Simulation" showing the
theoretical and empirical values of the waiting time in the queue, on a single set of axes. You can
use this plot to see how the empirical values evolve during the simulation and compare them with
the theoretical value.

• A scope labeled "Server Utilization" showing the utilization of the single server over the course of
the simulation.

 M/M/1 Queuing System

6-37

6 Learning More About SimEvents Software

6-38

Theoretical Results

Queuing theory provides the following theoretical results for an M/M/1 queue with an arrival rate of
and a service rate of :

• Mean waiting time in the queue =

The first term is the mean total waiting time in the combined queue-server system and the second
term is the mean service time.

• Utilization of the server =

Experimenting with the Model

Move the Arrival Rate knob during the simulation and observe the change in the simulation results

Related Examples

• M/D/1 Queuing System
• G/G/1 Queuing System and Little's Law

References

[1] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York, Wiley, 1975.

See Also
Entity Generator | Entity Server | Queue | Entity Terminator

 M/M/1 Queuing System

6-39

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Explore Statistics and Visualize Simulation Results”

6 Learning More About SimEvents Software

6-40

M/D/1 Queuing System

Overview

This example shows how to model a single-queue single-server system that has a Poisson arrival
process and a server with constant service time. The queue has an infinite storage capacity. In the
notation, the M stands for Markovian; M/D/1 means that the system has a Poisson arrival process, a
deterministic service time distribution, and one server.

Structure

The model includes the components listed below:

• Entity Generator block: Models a Poisson arrival process by generating entities (also known as
"customers" in queuing theory).

• Simulink Function exponentialArrivalTime(): Returns data representing the interarrival times
for the generated entities. The interarrival time of a Poisson arrival process is an exponential
random variable.

• Entity Queue block: Stores entities that have yet to be served in FIFO order

• Entity Server block: Models a server having a constant service time.

This model is similar to the M/M/1 Queuing System model, except that the service time in this model
is constant.

Results and Displays

The model includes these visual ways to understand its performance:

• A scope showing the average waiting time of entities (customers) in the queue at over the course
of the simulation.

 M/D/1 Queuing System

6-41

Theoretical Results

According to queuing theory, the mean waiting time in the queue equals

where is the arrival rate and is the service rate. This duration is half the theoretical mean waiting
time in the queue for the M/M/1 queuing system with the same arrival rate and service rate.

6 Learning More About SimEvents Software

6-42

Experimenting with the Model

Move the Arrival Rate Gain knob during the simulation and observe the change in the average
waiting time.

Related Examples

• M/M/1 Queuing System
• G/G/1 Queuing System and Little's Law

References

[1] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York, Wiley, 1975.

See Also
Entity Generator | Entity Server | Queue | Entity Terminator

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Explore Statistics and Visualize Simulation Results”

 M/D/1 Queuing System

6-43

G/G/1 Queuing System and Little's Law

Overview

This example shows how to model a single-queue single-server system in which the interarrival time
and the service time are uniformly distributed with fixed means of 1.1 and 1, respectively. The queue
has an infinite storage capacity. In the notation, the G stands for a general distribution with a known
mean and variance; G/G/1 means that the system's interarrival and service times are governed by
such a general distribution, and that the system has one server. You can change the variances of the
uniform distributions. You can use this model to examine Little's law.

Structure of the Model

The model includes the components listed below:

• Entity Generator block: Generates entities (also known as "customers" in queuing theory).

• Simulink Function uniformArrivalTime(): Returns data representing the interarrival times for
the generated entities. After you set the distribution's variance using the Arrival Process Variance
knob, the function computes a uniform random variate with the chosen variance and mean 1.1. To
see the computation details, double-click the Simulink Function and open the block labeled
Uniform Distribution.

• Entity Queue block: Stores entities that are to be served in FIFO order

• Entity Server block: Models a server whose service time has a uniform distribution.

6 Learning More About SimEvents Software

6-44

Results and Displays

The model includes these visual ways to understand its performance:

• Display blocks that show the queue workload, average waiting time in the queue, average service
time, and server utilization.

• A scope comparing empirical and theoretical ratios. See the discussion of Little's law below.

 G/G/1 Queuing System and Little's Law

6-45

Little's Law

You can use this model to verify Little's law, which states the linear relationship between average
queue length and average waiting time in the queue. In particular, the expected relationship is as
follows:

Average queue length = (Mean arrival rate)(Average waiting time in queue)

The Entity Queue block computes the current queue length and average waiting time in the queue.
The subsystem called Little's Law Evaluation computes the ratio of average queue length (derived
from the instantaneous queue length via integration) to average waiting time, as well as the ratio of
mean service time to mean arrival time. The two ratios appear on the plot labeled Little's Law.

Another way to interpret the equation above is that, given a normalized mean service time of 1, you
can use the average waiting time and average queue length to derive the system's arrival rate.

Little's Law Applied to the Server

You can also use this model to verify the linear relationship that Little's law predicts between the
server utilization and the average service time. The Entity Server block computes the server
utilization and average waiting time in the server. Because each entity can depart from the server
immediately upon completing service, waiting time is equivalent to service time for the server in this
model.

Experimenting with the Model

Move the Arrival Process Variance knob or the Service Process Variance knob during the simulation
and observe how the queue content changes. When traffic intensity is high, the average waiting time
in the queue is approximately linear in the variances of the interarrival time and service time. The

6 Learning More About SimEvents Software

6-46

larger the variances are, the longer an entity has to wait, and the more entities are waiting in the
system.

Related Examples

• M/D/1 Queuing System
• M/M/1 Queuing System

References

[1] Kleinrock, Leonard, Queueing Systems, Volume I: Theory, New York, Wiley, 1975.

See Also
Entity Generator | Entity Server | Queue | Entity Terminator

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Explore Statistics and Visualize Simulation Results”

 G/G/1 Queuing System and Little's Law

6-47

Comparing Queuing Strategies

Overview of Example

Have you ever been in a supermarket checkout and wondered why you are in the slowest line? This
example shows how queuing systems can be modeled in SimEvents for this type of application. Two
parallel versions of a simple model of a four register supermarket counter are presented - one that
uses four separate queues and one with a single "serpentine" queue that feeds all registers.

Setup

To begin, we model random customers entering the checkout area using entities in SimEvents to
represent customers that can be generated at random time intervals following an exponential
distribution. During generation we specify a random duration (also exponentially distributed) that a
customer will take to be served at a register by assigning a special attribute to the corresponding
entity. The average service time is set at 2 mins and the average arrival time is set at 1 min. Each
customer is cloned after generation so that the two different line configurations can be exercised
identically.

Four Separate Queues

To model the case where four separate queues feed the four cash registers, we use a Switch that
routes customers to the shortest of the four Queues. Each Queue then feeds a Server representing a
checkout register. This Server holds the customer for the amount of time that was setup during
generation.

6 Learning More About SimEvents Software

6-48

"Serpentine" Queue

To model the "serpentine" queue, we use a single Queue that feeds the four registers via a Switch
that routes customers to a free register when one becomes available.

Conclusion

The configuration with the four queues on average results in longer wait times. This example shows
the modeling of queueing systems in SimEvents for evaluating applications such as shortest lines.

 Comparing Queuing Strategies

6-49

See Also
Entity Generator | Queue | Entity Terminator

6 Learning More About SimEvents Software

6-50

Related Examples
• “M/M/1 Queuing System” on page 6-37
• “Create a Discrete-Event Model”
• “Explore Statistics and Visualize Simulation Results”
• “Manage Entities Using Event Actions”

 Comparing Queuing Strategies

6-51

Modeling Hybrid Systems - Tank Filling

Description

This example shows a hybrid system with both continuous time and discrete event sections. The
discrete event part models tanks, represented by entities, which are being queued and need to be
filled up. Each tank has a "Capacity" attribute. The continuous time part models the process of filling
up a tank, modeled by an Integrator. When a tank is filled to capacity, this event can be detected by a
Hit Crossing block, which will generate a message corresponding to this event. The generated
message will trigger the server to release the tank.

Structure of the Model

The model includes the following components:

• Tank Generator: Generates tanks periodically with each tank having an arbitrarily assigned
Capacity attribute.

6 Learning More About SimEvents Software

6-52

• Waiting Queue: Queues tanks waiting to be filled

• Fill This Tank: Serves tanks and calls into the Simulink Function startFilling to pass the
tank's capacity attribute to the time-based section of the model.

• Tank Filling: Models the process of filling each tank up to capacity

• Sensor: Detects when the amount filled in the tank has reached capacity and when this happens,
sends a message to the discrete-event section of the model. Sensor serves as a bridge between the
time-based section and even-based section.

• Processor: Receives message generated from the Sensor and decides which tank to be released
from the Server. It then calls the Simulink Function named release to generate a release
message for a specific tank.

• Selection Gate: Receives a release message, and in response, opens the gate to let the specific
tank through.

• Configure Demo: Sets the number of gas pumps in the gas station and turns on/off of the
animation. To show the animation, please use a gas pump number between 1 and 20.

Domain Crossings Between Time Domain and Event Domain

SimEvents automatically handles any exchange of data across the time and event domains by
automatically inserting gateways where needed. These positions are annotated in the model using E.
In this model, a gateway has been inserted at the input port of the Entity Queue block that is
connected to the Hit Crossing block since it receives a message from the time domain section of the
model.

Results

The Scope block labeled "Fill Process" and "Trucks leaving after fill" shows the results of the
simulation.

 Modeling Hybrid Systems - Tank Filling

6-53

If Show Animation check box is selected in Configure Demo, an animation window appears for
visualizing the demo. A screenshot of the animation with four gas pumps is shown below:

6 Learning More About SimEvents Software

6-54

See Also
Entity Generator | Queue | Entity Terminator

Related Examples
• “Route Vehicles Using an Entity Output Switch Block” on page 3-2
• “M/M/1 Queuing System” on page 6-37
• “Create a Discrete-Event Model”
• “Explore Statistics and Visualize Simulation Results”
• “Manage Entities Using Event Actions”

 Modeling Hybrid Systems - Tank Filling

6-55

Resource Allocation from Multiple Pools

Overview

This example shows a technique for allocating resources from multiple resource pools. It shows how
to choose a pool from which to draw a resource, based on given criteria.

Structure of the Model

There are two main components of the model.

• Request Generation and Queuing
• Resource Pools and Resource Allocation

Request Generation and Queuing

The Entity Generator block generates requests using a Uniform distribution. In order for these
requests to be acted upon, they require a resource from one of the two resource pools. Each of the
requests has an attribute that specifies the kind of resource it requires. The requests move to one of
the queues dedicated for each type of resource pool.

6 Learning More About SimEvents Software

6-56

Resource Pools and Resource Allocation

The model has two resource pools, Type 1 and Type 2. The Type 1 and Type 2 Resource Pool blocks
model the pools. These pools hold the resources before and after their use. The size of each pool is
defined as parameter of the corresponding block.

The Resource Acquirer and Resource Releaser blocks manage the acquisition and the return of the
resource. The Entity Server block in that region models the duration for which the resources are
used.

Results and Displays

This model includes the following plots.

• The Pending Type 1 Requests and Pending Type 2 Requests plots show the number of requests
waiting for resources from the corresponding pools. You can see that more requests for Type 1
resources wait compared to requests for Type 2 resources.

 Resource Allocation from Multiple Pools

6-57

• The Type 1 Resources in Use and the Type 2 Resources in Use plots show the instantaneous
values of the number of resources available for use in the corresponding resource pools.

6 Learning More About SimEvents Software

6-58

• The average wait time for acquiring each type of resources is reported by the Resource Acquire
blocks for Type 1 Resource and Type 2 Resource.

Average Wait Time for Resource Type 1 = 0.00
Average Wait Time for Resource Type 2 = 0.00

• The average amount of resources in use at each resource pool is reported by Resource Pool blocks
for Type 1 Resource and Type 2 Resource.

Average Use of Resource Type 1 = 0.47
Average Use of Resource Type 2 = 0.50

The model has the following configuration:

• Resource request distribution: Type 1 = 0.4, Type 2 = 0.6
• Duration of Type 1 resource use : 0.05
• Duration of Type 2 resource use : 0.07
• Type 1 pool size : 4
• Type 2 pool size : 8

From the above results, you can see that the larger pool size of Type 2 resources results in a lower
average wait time even with a higher request rate and longer duration of resource use.

Experimenting with the Model

To vary system behaviors, like the number of resources available and wait times for resources,
change the following settings:

• The probabilities for changing the generation rate of the resource requests in the
Intergeneration time action parameter of Entity Generator.

• The Service time parameter of the Entity Server blocks in the Resource Pool and Resource
Allocation regions of the model for changing the duration of the resource usage.

 Resource Allocation from Multiple Pools

6-59

• The Resource amount parameter of the Type 1 Resource Pool and Type 2 Resource Pool blocks
to change the number of resources in the pool.

See Also
Entity Generator | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-60

Using Entity Priority to Sequence Departures

Description

This example shows how to use entity priority to sequence entity departures when multiple entities
are available to depart. The example models an airport check-in counter where passengers arrive to
be checked in. Passengers can have either First-Class, Business Class, or Economy Class
reservations, modeled using entity priority values 1, 2 and 3 respectively.

The example models two scenarios:

• The first involves a Priority Queue in which passengers are explicitly sorted by their entity priority.
This ensures that all First Class passengers are sorted before Business Class, which are in turn
sorted before Economy Class. This is called "Explicit Prioritization" in the model.

• The second involves an Entity Server in which all passengers are waiting in an unordered fashion.
When the check-in agent is available, all passengers schedule departure events. These
simultaneous events are ordered by entity priority, ensuring that the entity with the highest
priority will depart first, and all the other departures will fail. This is called "Implicit
Prioritization" in the model.

 Using Entity Priority to Sequence Departures

6-61

Results

In this simulation, the Entity Generator simultaneously generates 30 passengers at time 0. Once 30
are available in the Pool, the Entity Gate opens and all passengers can depart. The results show the
simultaneous arrivals of all passengers at time 0 with their entity priorities. When the Gate opens, it
is seen that all passengers depart in order of their entity priority.

See Also
Entity Generator | Queue | Entity Terminator

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36

6 Learning More About SimEvents Software

6-62

Using Custom Visualization for Entities

Overview

These examples show how you can create MATLAB®-based custom visualization for entities. The
example illustrates the visualization of a restaurant layout with customer entities entering, dining,
and leaving.

Structure of Model

The model contains the following major components:

• The Resource Pool block models the tables in the restaurant. Since there are 10 tables in the
restaurant, the resource amount is 10.

• The Entity Generator block (Patron Enter) generates entities representing customers. They enter
a waiting area, represented by a Resource Acquire. Here they wait for a free table.

• When a table is available for a customer, he can move to the Entity Server block which models the
duration of eating.

• When the customer is done eating, he releases the table back to the pool and exits the restaurant.

modelname = 'seCustomVisualization';
open_system(modelname);

Visualizing the Restaurant

seRestaurantAnimator visualizes the restaurant as follows:

• seRestaurantAnimator provides the visualization of the restaurant layout for the model.
• It generates the figure containing the layout of a restaurant with an entrance, a waiting area, 10

dining tables, and an exit.

 Using Custom Visualization for Entities

6-63

• As entities move during the simulation, it creates a marker (glyph) for each entity in the figure
and programs motion for the marker so that it appears to move from one point to another.

• The animator assigns a table ID for each waiting customer and shows the customer moving to the
table.

• To inspect the attributes of the customer entity, pause the model and click on a customer entity
glyph. The figure displays the TimeToDine attribute.

• To make the motion appear continuous, it uses a MATLAB timer to periodically execute a function
that incrementally moves each entity towards its destination.

• It uses MATLAB graphics to display statistics on the figure about the number of entities entering,
waiting, and leaving.

• Clicking an entity in the visualization displays the attributes that it contains. It uses a MATLAB
graphics callback to program a ButtonDownFcn on each entity marker.

animator = seRestaurantAnimator;

To simulate the model, enter:

 sim(modelname);

6 Learning More About SimEvents Software

6-64

close(animator.getFigureHandle);
close_system(modelname);
clear modelname animator

See Also
Entity Generator | Queue | Entity Terminator

Related Examples
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-5
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”

 Using Custom Visualization for Entities

6-65

Selection Server - Select Specific Entities from Server

Description

This example shows how you can use the MATLAB Discrete Event System block to write a custom N-
Server from which specific entities can be selected using a key lookup. Passengers enter from the IN
port of the block and are stored in the block until a message arrives at the KEY port carrying a lookup
key. Upon receiving this message, the system schedules an "Iterate" event during which it can visit
every entity stored in it and output the one that matches the key.

Results

The simulation prints information about entities entering the MATLAB Discrete Event System block
and selection commands.

Passenger entry: key = 2.000000
Passenger entry: key = 10.000000
Baggage entry: key = 10.000000
Passenger exit: key = 10.000000
Passenger entry: key = 4.000000
Passenger entry: key = 5.000000
Passenger entry: key = 3.000000
Baggage entry: key = 3.000000
Passenger exit: key = 3.000000
Passenger entry: key = 8.000000
Passenger entry: key = 7.000000
Passenger entry: key = 1.000000
Baggage entry: key = 8.000000
Passenger exit: key = 8.000000
Passenger entry: key = 6.000000
Passenger entry: key = 9.000000

See Also
MATLAB Discrete-Event System

6 Learning More About SimEvents Software

6-66

Related Examples
• “Delay Entities with a Custom Entity Storage Block” on page 9-9
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-14
• “Custom Entity Storage Block with Multiple Timer Events” on page 9-19
• “Custom Entity Generator Block with Signal Input and Signal Output” on page 9-24
• “Build a Custom Block with Multiple Storages” on page 9-31
• “Create a Custom Resource Acquirer Block” on page 9-38

 Selection Server - Select Specific Entities from Server

6-67

Flush Entities from a Queue-Server

Description

This example shows how you can use a Discrete-Event Chart block to model a queue-server that can
flush entities when it receives a message on the "FlushCmd" port.

Discrete-Event Chart

The Discrete-Event Chart implements a single server with two states "Idle" and "Busy". The server is
busy when an entity arrives at the IN port. It holds the entity in a local queue named "LocalQueue"
until its service time expires. After this time the entity is forwarded out.

While serving an entity, if a "FlushCmd" command is received, it transitions to the "Flushing" state in
which it iterates over its input queue and forwards each of its waiting entities out from the FLUSH
output port. Additionally, it also forwards the entity that is currently being served in the LocalQueue.

6 Learning More About SimEvents Software

6-68

Results

The results show that a flush command was received at times 10 and 20 during the simulation. At
these instants, all entities in the queue-server were flushed out.

 Flush Entities from a Queue-Server

6-69

See Also
Entity Generator | Queue | Discrete-Event Chart

Related Examples
• “Discrete-Event Chart Precise Timing” on page 8-7
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-10
• “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-19
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”

6 Learning More About SimEvents Software

6-70

Server with Pause/Continue

Description

This example shows how you can use a MATLAB Discrete Event System block to model a single server
that can pause service. The input port IN receives entities to be served. Additionally, the system may
receive sporadic pause commands on port PauseCmd. If the message received on the PauseCmd port
carries data=1, the system pauses. The system reschedules service for the current entity when it
receives a continue message on this port, i.e. a message that carries data=0.

See Also
MATLAB Discrete-Event System

 Server with Pause/Continue

6-71

Related Examples
• “Delay Entities with a Custom Entity Storage Block” on page 9-9
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-14
• “Custom Entity Storage Block with Multiple Timer Events” on page 9-19
• “Custom Entity Generator Block with Signal Input and Signal Output” on page 9-24
• “Build a Custom Block with Multiple Storages” on page 9-31
• “Create a Custom Resource Acquirer Block” on page 9-38

6 Learning More About SimEvents Software

6-72

Simulation of a Medical Device

This example shows how to conduct automated tests to model a medical device that analyzes biology
samples. This example also requires a Stateflow® license.

Objective

The objective of medical device modeling is to assess the optimal dimensions of the sample area to
maximize the number of samples analyzed by the device per hour.

Overview of System to Be Modeled

A medical device contains:

• Samples to be analyzed
• Reagent bottles

The vials that hold the samples to be analyzed are loaded on the left side of the device. The reagent
bottles are loaded on the right side of the device.

Process of Sampling for a Specific Test

1 The sample is mixed with the corresponding reagent in a cuvette.
2 The mixture sits for a certain duration for the reagent to act on the sample.
3 To take readings of the mix, the device shines a laser on the mixture.

See ''Automation Workflow Using Three Robot Arms'' to see how a medical device uses three robot
arms to implement this process as an automated workflow.

Automation Workflow Using Three Robot Arms

1 Robot arm 1 picks up a cuvette and places it in the testing area at the top.
2 Robot arm 2 draws a sample and puts it into the cuvette.
3 To create a mixture to be sampled, robot arm 3 draws the required amount of reagent

corresponding to the test and puts it into the cuvette.
4 The mixture sits for a short duration to allow the reagent to act on the sample.
5 To take readings, the device shines a laser light on the mixture.
6 The device discards the cuvette.
7 This process is repeated until there are no more samples in the device.

Model of Medical Device: This is the SimEvents model for the medical device:

 Simulation of a Medical Device

6-73

To modify the number of samples before starting to simulate, turn the knobs in the 'Samples' block.

• A sample bay is a device that contains holders to hold samples. To specify the number of sample
bays to use, turn the knob that changes the variable 'nSampleBays'.

• To specify the number of samples that a sample bay can take, turn the knob that changes the
variable 'samplesPerBay'.

The Model Has Three Primary Elements:

• Model samples
• Test data
• Model animation The model runs the length of the specified samples and dimensions. The model

animation visualizes the simulation and allows you to interact with the simulation.

Model Samples

The block labeled 'Samples' models the sample holding area. At simulation start, the reagents area is
loaded with all the reagents. The cuvette area is loaded with cuvettes. The sample area is loaded with
patient samples.

Test Data

'BioSampleAnalyzerData.xlsx' contains tests requested by patients. It contains these worksheets:

6 Learning More About SimEvents Software

6-74

• 'PatientTests' - Patient IDs and test IDs of the tests to be conducted.
• 'TestData' - Details of each test. For each test ID it contains information about the amount of

sample to be used (sampleAmount), the reagent to be used (reagentId), the amount of reagent to
be used (reagentAmount), the priority for the test, and the amount of time the mixture must stay
together (testTime) before taking a reading.

• 'TestNames' - List of names for the reagents.

Model Animation

To view and interact with the model using animation, click the switch on the 'Animation Switch' block.
Clicking the switch 'On' opens the 'Hematology Diagnostic Instrument' window. If you do not use
model animation, the example runs until the end.

The 'Hematology Diagnostic Instrument' Window Contains:

• Three robot arms at the top.
• Time - which displays elapsed time.
• Throughput - which displays the samples/hr of the device.
• Cuvette area - where cuvettes are placed. The number of remaining cuvettes is shown at the top of

the cuvette area.
• Reagents area - where reagents are kept. Reagents display as blue circles. The top of each

reagent circle displays an abbreviation of the reagent. The bottom of each circle displays the
amount of remaining reagent. When the amount of remaining reagent falls below 3 units, the
amount of remaining reagent displays in red. To refill a reagent ball, click it. When a test is
skipped due to an insufficient amount of reagent, the corresponding reagent is highlighted in
yellow.

• Samples area - where samples are kept. Samples display as pink balls. The top of each sample
circle displays the testID. The bottom right of each sample circle displays the sample priority; the
lower the number, the higher the priority. Samples are tested in order, highest priority to lowest
priority. If a sample is waiting for a reagent to refill, the ball turns yellow. The model skips that
sample and proceeds to the next sample until it can no longer continue. When a sample is
completed, the ball turns orange. At the bottom of each sample column is a number indicating the
sample bay. To test all the samples in a bay, click the corresponding sample bay number.

Things to Try

• Change the number of samples.
• Configure the parameters for the bioTester block.
• Sample - Change the 'Number of sample bays' and the 'Number of samples per bay' values for the

samples area.
• Timing - Change timing related value, such as velocities for the robots and other timing related

values.
• Toggle the 'Animation Switch'.
• Toggling the switch to 'Off' runs the simulation until all the samples are exhausted.
• Toggling the 'Animation Switch' 'On' shows the animation window. In this mode, you can interact

with the simulation. To load samples, click one of the buttons at the bottom of a column that
corresponds to a sample bay. When the button is clicked, sample data is read from the workspace
variable 'patientTests' and the balls in the bay corresponding to the button are populated with
samples. You can continue clicking the buttons.

 Simulation of a Medical Device

6-75

Evaluating the Best Sample Area Dimensions

One of the objectives of a Medical Device builder might be to determine the sample area size that
gives the best throughput for the device. One consideration is that increasing the size of the sample
area adds to the amount of time it takes the robot arm to reach the samples that are furthest away.
Reducing the size of the sample area reduces the travel time of the robot arm. There is however a
fixed setup time required to load all the sample bays, follow the device initialization procedures, and
turn on the device. This setup time is amortized across all samples. If the number of samples is low,
the setup time adds to the overall throughput.

To find the best sample area dimensions, you can simulate the device with different sample area size
configurations. The script searchDim.m performs searches across all the possible sample area
dimensions and plots the throughput for each sample area dimension. The script calculates the
throughput as:

Throughput = (Number of samples)/(time to finish samples * 3600)

The following plots show the results of running this script:

6 Learning More About SimEvents Software

6-76

The first plot shows a Heat Map of throughput with 'samples per bay' along the horizontal and
'number of sample bays' along the vertical axis. The second plot shows a line plot of 'sample
throughput' vs. 'number of samples'. As seen from these figures, the throughput for the dimensions
corresponding to 6 bays and 9 samples per bay gives the highest throughput.

See Also
MATLAB Discrete-Event System

Related Examples
• “Delay Entities with a Custom Entity Storage Block” on page 9-9
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-14
• “Custom Entity Storage Block with Multiple Timer Events” on page 9-19
• “Custom Entity Generator Block with Signal Input and Signal Output” on page 9-24
• “Build a Custom Block with Multiple Storages” on page 9-31
• “Create a Custom Resource Acquirer Block” on page 9-38

 Simulation of a Medical Device

6-77

Dining Philosophers Problem

Problem Description

The Dining Philosophers problem is a classical problem, originally formulated by E.W. Dijkstra, to
demonstrate classical problems in computer science and the programming of concurrent or parallel
processes.

Four philosophers are seated at a table, spending their lives in an infinite cycle of thinking and
eating. A philosopher must pick up both forks before he can eat. You can think of the philosophers as
concurrent processes and the forks as shared resources. The problem is to determine the policy or
algorithm so that each philosopher gets to eat and does not starve. For example, one algorithm is for
each philosopher to pick up first the fork to his right, then the fork to his left, before he eats. That
this will eventually lead to a deadlock situation where all of the philosophers are holding one fork,
waiting for each other to put down their forks.

Philosopher Model

This example models each philosopher as a discrete event system that generates a single entity at the
start of the simulation. The position of the entity within the system reflects the state of the
philosopher. Each state of the philosopher is an Entity Server that can hold the entity for a
randomized period of time.

6 Learning More About SimEvents Software

6-78

Resource Hierarchy Solution

The algorithm illustrated here is a variation of the original algorithm described by Dijkstra. Each fork
is numbered and philosophers first pick up the smaller numbered fork and then the larger numbered
fork. This algorithm is sufficient to avoid deadlocks because only one philosopher can ever hold the
highest numbered fork and consequently that philosopher can proceed to eat.

 Dining Philosophers Problem

6-79

Results

The first figure shows a Gantt chart of all four philosophers as they cycle between thinking, starving,
and eating.

The second figure shows the instantaneous states of all four philosophers during the simulation. A
line drawn from a philosopher (filled circle) to a fork (rounded rectangle) indicates that the
philosopher has picked up that fork and hence the fork is unavailable for its neighbor.

Deadlock

In this model, a deadlock can be reached if Philosopher 4 reverses his order of fork preference so that
he picks up Fork 4 before Fork 1. This violates the above resource hierarchy constraint and
simulating the model with this change will result in a deadlock as shown below.

6 Learning More About SimEvents Software

6-80

The result above shows that each philosopher has picked up the right fork and everyone is waiting for
the other fork to become available, causing a deadlock.

References

[1] Dining Philosophers Problem - Wikipedia (https://en.wikipedia.org/wiki/
Dining_philosophers_problem)

See Also
Entity Generator | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Resource Allocation Modeling”

 Dining Philosophers Problem

6-81

https://en.wikipedia.org/wiki/Dining_philosophers_problem
https://en.wikipedia.org/wiki/Dining_philosophers_problem

Simulate Scheduler of a Multicore Control System

Overview

This example shows how to model the task scheduling of a control application using SimEvents®
blocks. SimEvents expands Simulink® with the capability to model and simulate architectural
components of a real-time system.

The top model includes two areas of blocks:

• Functional Components includes two closed-loop systems. Each has a proportional controller
operating a plant.

• Architectural Components includes SimEvents blocks modeling the tasks and scheduler of this
control system.

6 Learning More About SimEvents Software

6-82

Modeling Tasks and Scheduler

This example models a controller as a Simulink exported function model. It maps execution of a
controller to a software task that an operating system periodically schedules and executes. A task can
be divided into multiple segments (or subtasks). Due to data dependencies, these segments must be
executed in sequential order.

A task is specified with the following parameters:

 Simulate Scheduler of a Multicore Control System

6-83

• ID: Unique identifier of a task.
• Period: How frequently a task is instantiated for execution.
• Priority: Priority of the task (smaller value indicates higher priority).
• List of runnable segments (functions): Executables associated with each segment of the task.

These executables are represented by Simulink functions of an exported function model.
• Segment execution duration: Time for a task segment to complete, if it is executed on a

processor without interruption.
• Needs disk i/o resource for each segment: Whether a segment of the task requires the use of a

mutex-protected shared resource (a hard disk).

For example, block Task 2 specifies a task for the second controller (block Controller2). The task
includes two segments, "t2_run" and "t2_write", both modeled as Simulink functions in model
seSwcController2. In these segments, "t2_write" requires the use of the mutex-protected shared
resource.

Scheduler of the operating system is modelled with the following components:

• Task creation: Block Task 1 and Task 2 create tasks and manage task states. A SimEvents entity
represents an instance of a task. Properties of a task (such as its priority) are modelled as entity
attributes.

• Task queue: Upon instantiation, a task joins a ready task queue, which is modelled by the Entity
Queue block OS Task Queue. To simulate a non-preemptive priority-based scheduling policy, the
queue block is configured to sort tasks by the taskPriority attribute.

• CPU: The processor of the system is modelled as an Entity Server block CPU. It accepts entities
from the OS Task Queue and processes the entity for a duration as specified by the task's
Segment execution duration parameter. At the end of this delay, the corresponding Simulink
function of this task segment is called, as a part of the block's Service complete action.

• Lock/unlock Mutex: Before a task segment enters the block CPU, it must acquire the required
resource at the preceding Lock Mutex block. After the task segment completes and exits the block
CPU, the resource is released at the Unlock Mutex block.

• Managing task states: Blocks under the mask of Task 1 and Task 2 manage the run-time state of
tasks. Upon completion of a task segment, if the task has subsequent segments to execute, the
task is routed back to the OS Task Queue. Otherwise, this task instance is completed and
discarded.

Results and Displays

The block CPU is configured with two cores. Simulating the model generates the following Gantt
chart.

• The higher priority task, Task 2 (red bars), is scheduled to core 1 (y = 1).
• The lower priority task, Task 1 (blue bars), is scheduled to core 2 (y = 2).
• The second segment of Task 2 uses the mutex DiskLock. Green bars indicate the usage (y = 3).

6 Learning More About SimEvents Software

6-84

Explore the Model

Change the following parameters and explore how task schedules and controller performance
changes with re-configured architectural parameters.

• In block CPU, configure parameter Capacity to change the number of cores.
• In blocks Task 1 and Task 2, configure parameters such as Period and Priority to change task
specifications.

For example, if we change Need disk i/o resource for each segment parameter of the Task 1 block
to [0 0 1], the t1_write segment of Controller 1 must acquire mutex DiskLock before it can start to
run. Simulation generates a Gantt chart that illustrates that change.

• Both tasks have segments that use mutex DiskLock, as indicated by green bars (y = 3).
• The third segment of Task 1 now must execute in a serial fashion with the second segment of Task

2 (see y = 1), because both segments share the mutex DiskLock.

 Simulate Scheduler of a Multicore Control System

6-85

Related Examples

• Develop Custom Scheduler for a Multicore Control System

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-86

Develop Custom Scheduler of a Multicore Control System

Overview

This example shows how to model a customer scheduler using the SimEvents® MATLAB Discrete-
Event System block. The model includes a Scheduler block that can simulate a multicore system with
an arbitrary number of cores, tasks, and mutually exclusive resources.

The model configures the Scheduler block to process tasks of closed-loop control systems. The
simulation measures the performance of these control systems, and provides metrics of the run-time
environment, such as latencies and resource contingencies. These results can help designers of
control systems develop architectural specifications for their functional components.

 Develop Custom Scheduler of a Multicore Control System

6-87

Creating Custom Scheduler in MATLAB

The Scheduler block of the root model is developed primarily as a MATLAB® discrete-event system.
MATLAB file seSchedulerClass contains the implementation of the corresponding discrete-event
System object.

The example models a controller as a Simulink® exported function model. Execution of a controller is
mapped to a software task that is scheduled to execute periodically. A task can be divided into
multiple segments (or subtasks). Due to data dependencies, these segments must be executed in
sequential order.

The Scheduler block includes the following parameters:

• Number of cores: Number of cores available for the operating system to use.
• Scheduling policy: Select either "Priority-based" or "Round robin" as the scheduling policy of the

operating system. Priority-based scheduling sorts and executes tasks in a prioritized order. Round
robin policy allows tasks to equally take turns.

• Number of tasks: Number of tasks in this operating system.
• Task periods: How frequently each task is instantiated for execution.
• Task priorities: Priority of each task (smaller value indicates higher priority).
• Number of segments in each task: Number of segments (subtasks) a task has.
• Simulink function for each segment: Executables associated with each segment of a task.

These executables are represented by Simulink functions of an exported function model.
• Execution durations of each segment: Time for a task segment to complete, if it is executed on

a processor without interruption.
• Number of mutually exclusive resources: Number of mutually exclusive resources of the

operating system. One task at a time can acquire and use the resource. Operating system uses
mechanisms such as mutexes to manage these resources.

• Use of resources by each task: Cell vector. Each element of the vector indicates the use of
resources by a task.

Comparing Different Core Allocations

The Scheduler block allows you to assign an arbitrary number of cores and explore how that impacts
system performance. We begin with a scenario where two cores have been assigned to execute the
two control tasks. With sufficient processing capacity, both closed-loop control systems perform well
in response to set point changes.

6 Learning More About SimEvents Software

6-88

The timing diagram of the scheduler indicates that control tasks are concurrently processed by both
cores, with cores having medium and balanced utilizations.

In comparison, when only one core is assigned, the performance of Controller1 degrades due to task
overruns (see Plant1). The timing diagram clearly indicates such task overruns, and the significantly
increased latencies.

 Develop Custom Scheduler of a Multicore Control System

6-89

Notice that the performance of control task 2 remains unchanged. This is because the scheduler
applies the priority-based policy where processing capacity is maximally assigned to high priority
tasks.

Comparing Different Scheduling Policies

At this point, if the Scheduler switches to use a round robin scheduling policy, the control system
performs differently. Compared to the previous case, where processing capacity remains the same,
Plant 1 becomes stable, with the cost of degrading the performance of Plant 2. This change is due to
the fact that the round-robin policy evenly assigns the processing capacity among all tasks.

6 Learning More About SimEvents Software

6-90

Comparing Different Resource Allocations

Now let us configure the scheduler back to use two cores, and explore different resource allocation
schemes. We add a resource that can be shared by tasks in a mutually exclusive fashion.

 Develop Custom Scheduler of a Multicore Control System

6-91

6 Learning More About SimEvents Software

6-92

As indicated by the timing diagram, although concurrent execution is allowed with two cores, the
tasks are processed in a sequential fashion. Only one core is in use. This is because a task must wait
for the required resource before it can be processed.

You can eliminate such resource contingency by assigning more resources. Let us configure the
scheduler block to use 2 resources, and allow a task to have a dedicated resource.

 Develop Custom Scheduler of a Multicore Control System

6-93

With each task having its own resource, tasks are processed concurrently.

Related Examples

• Simulate Scheduler of a Multicore Control System

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-94

Distributing Multi-Class Jobs to Service Stations

Overview

This example shows how to model a central resource that manages distributed processing according
to an explicit formula. The example describes a distribution center that manages a series of processes
that each job undergoes, with each job carrying information about the series of processes that it must
undergo. One of the applications where this could be useful is when you want to model a central
dispatcher that routes calls from one call processing station to another.

Multiple-Class Job Generation

This generator produces jobs that possess these attributes:

• JobClass - A value of 1, 2, or 3, which determines the value of ServiceProcess and
ServiceTime

 Distributing Multi-Class Jobs to Service Stations

6-95

• JobID - An integer between 1 and 15. This acts as an identifier for each job. This can be used to
track a job as it moves through the different service stations.

• LastServiceLocation - 0 initially, to be modified during the simulation as the job visits
different service stations

• JobServiceStatus - A vector of 0s initially, to be modified during the simulation as the job
completes different processes

• ServiceProcess - A vector that lists the processes that the job undergoes

• ServiceTime - A vector that lists the duration of each process that appears in ServiceProcess

• CurrentStep - 1 initially, to be modified during the simulation as the job progresses through its
series of processes

Distribution Center Subsystem

This subsystem uses the vector elements of each job's ServiceProcess attribute to route the entity
to the correct service station. The distribution center also updates information that the job carries
about its current state.

During the simulation, each job follows a trajectory from the distribution center to a service station,
back to the distribution center, to a (possibly different) service station, and so on. The particular
trajectory depends on the ServiceProcess attribute value.

Service Stations

Each of multiple Service Stations processes the arrived job based on the JobClass and CurrentStep of
the job. Upon the completion of the service, the job returns to the distribution center.

Experiment with the Model

To see the service history for a particular job in Scopes/Service History for Jobs, enter the job ID in
the distribution system 'Display service history for jobs with ID' parameter.

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-96

Effects of Communication Delays on an ABS Control System

Overview of Example

This example shows how stochastic network traffic causes timing latency and uncertainty in an anti-
lock braking system (ABS) that uses Control Area Network (CAN) communications. The model is
representative of a real-world heavily-loaded network and also illustrates a domain-specific model of
a distributed system. By including real-world timing effects in a model, you gain confidence about the
behavior and robustness of your design before you test it in hardware.

No Traffic

We begin with the ideal scenario of an anti-lock braking system using CAN communications with no
background traffic. In this model, we simulate a CAN with no background traffic by manually setting
the output of the Manual Switch that is contained in the Background Traffic subsystem block to the
"OFF" position, before running the simulation. In this ideal scenario, the software simulates a
communication system with a steady rate of network utilization over time and with no delays in
message delivery. These ideal conditions result in excellent slip response from the ABS system
relative to decreasing wheel speed.

 Effects of Communication Delays on an ABS Control System

6-97

With Traffic

Next, we simulate the more realistic scenario of a CAN with some stochastic network traffic. This
background traffic results in message delivery delays on the network. To simulate this, we manually
set the Manual Switch contained in the Background Traffic subsystem block to the "ON" position. By
setting the Manual Switch to this position, we allow the Step Function block that is also contained in
the Background Traffic subsystem block to introduce traffic to the network. In this model, the Step
Function block is configured to output a value at simulation time, T=6 seconds. If we contrast the
updated simulation results with those of our previous ideal scenario, we see that the introduction of
message delivery delays to the network results in much poorer slip response from the ABS system
relative to the wheel speed.

6 Learning More About SimEvents Software

6-98

Re-prioritization of the CAN Messages

A CAN network processes messages from distributed nodes on the network based on the message
priority of each node. In our model, we define a message priority of 5 for the ABS Controller
subsystem, 6 for Vehicle Dynamics subsystem, and 4 for Background Traffic subsystem. This means
that the CAN network processes messages from the Background Traffic subsystem first. We saw
previously that the introduction of background traffic on the network resulted in much poorer slip
response from the ABS system. To reduce the negative impact of background traffic, we adjust the
CAN message priority of the ABS Controller subsystem and Vehicle Dynamics subsystem to have a
higher priority than the Background Traffic subsystem. This change results in a reduced message
delivery delay on the network and an improved slip response from the ABS system relative to the
wheel speed.

 Effects of Communication Delays on an ABS Control System

6-99

Conclusion

This example shows an anti-lock braking system using CAN communications and highlights the
negative effect that increased network utilization can produce on latency and response times.

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-100

Aircraft Boarding Process Flow

Description

This example shows how to use SimEvents® to model a process such as the boarding of an aircraft.
The process consists of multiple activities such as "Disembark", "SecurityCheck", "Refueling" etc.
Some activities can be done concurrently, as represented by multiple parallel paths using AND
blocks. Some activities are mutually exclusive and these are represented as output paths using OR
blocks. Each activity takes up non-zero time. You can use such a model to study various aspects of a
process, such as bottlenecks, resource contention, latencies, etc. The model generates a single entity
at the start of simulation. This entity represents the control flow in the process. The position of the
entity in the model determines which activity is currently running.

Activity

Use an Entity Server block to model an activity. The service time is a randomized number with a
specified mean value. Activities can be sequential, concurrent, or mutually exclusive with respect to
each other.

Sequential Activities

Activities that are chained to each other are considered sequential. This means that the first activity
(or set of activities) must be completed before the second activity can start.

 Aircraft Boarding Process Flow

6-101

Concurrent Activities

Activities which can be executed simultaneously are concurrent activities. You can use an Entity
Replicator to replicate the input control entity into N output entities that will flow concurrently into
parallel activities. This model uses a masked Entity Replicator block as the AND output block. A
synchronization can be described for all activities when concurrent control paths are completed. Use
an AND input block to model such synchronization or "join".

Mutually Exclusive Activities

Two activities of which only one can ever be executed during a given scenario are mutually exclusive.
You can use the Entity Output Switch block to model an OR construct in which mutually exclusive
activities can be placed on each output. The control flow entity will be routed to one of the N outputs,
thus ensuring that only one of the mutually exclusive activity paths is executed.

Simulation Results

This model produces a Gantt chart of the simulation that shows each activity and how long it took to
execute. The Gantt chart shows how concurrent activities are executed in parallel, while sequential
activities are only executed when the preceding activities are completed.

6 Learning More About SimEvents Software

6-102

Optimization of Shared Resources in a Batch Production
Process

Overview

This example shows how to model and optimize the use of shared resources in a system, to identify
resource deficiencies and improve capacity planning. The example is based on a batch production
process, where production orders are processed only according to the availability of batch reactors.
In the example, SimEvents® entities represent both the production orders of the manufacturing
process, and the batch reactors that are required to process them. Later in the example, we will find
the optimal resource capacities of the system by applying the Genetic Algorithm solver of MATLAB
Global Optimization Toolbox.

modelname = 'seBatchProduction';
open_system(modelname);
scopes = find_system(modelname, 'LookUnderMasks', 'on', 'BlockType', 'Scope');
cellfun(@(x)close_system(x), scopes);
set_param(modelname, 'SimulationCommand', 'update');

Structure of Model

At the top level of the model, the Entity Generators simulate the generation and backlog of
production orders by generating entities that represent production orders. When a new entity is
generated, the Obtain Reactor block requests a batch reactor to process the order. After the Execute
Chemical Process Recipe subsystem completes the order according to a specified chemical process
recipe, the block labeled Release Reactor releases the batch reactor back into the pool of resources,
where it is now available to process a new order. The Data Analysis subsystem analyzes data related
to completion of production orders.

Shared Resources in the Production Process

The Execute Chemical Process Recipe subsystem simulates the chemical process to produce sol (a
type of colloid). A six-step recipe models the main operations in sol production. Execution of these

 Optimization of Shared Resources in a Batch Production Process

6-103

steps requires different resources. A batch reactor provides built-in capabilities to execute steps like
adding color, adding particles and stir. Thus the resources required by these steps do not need to be
modeled separately. On the other hand, the steps to add water, heat up and drain require extra
resources. These resources are shared by all the batch reactors and are limited by the capacity of the
production system.

open_system([modelname '/Execute Chemical Process Recipe']);

For example, when water usage reaches the full capacity, water pressure is too low for another batch
reactor to access. In this case, production in that reactor pauses until the water supply becomes
available again. In the Execute Chemical Process Recipe subsystem, the example models such a
resource sharing process with a Queue block labeled Wait for Water Supply and an Entity Server
block labeled Add Water in the Add Water subsystem. The Capacity parameter of the Entity Server
block models the capacity of the water supply. During simulation, the number of entities in the Queue
block indicates the number of batch reactors waiting for water. The number of entities in the Server
block represents the number of batch reactors accessing water.

open_system([modelname '/Execute Chemical Process Recipe/Add Water']);

The modeled batch production process is capable of producing two types of batches: type A and type
B. Although the main steps required to produce either batch are the same, the chemical process
recipes are different. For example, the recipe to produce type B requires more water, so the step to
add water takes more time to complete.

Results and Displays

During simulation, the Data Analysis subsystem displays several results to show the performance of
the production process.

The most illustrative result here is the first one, Average number of orders in backlog, which
represents the wait time for orders as the system struggles to keep up with inflow.

sim(modelname);
open_system([modelname '/Data Analysis/Order Backlog']);

6 Learning More About SimEvents Software

6-104

Other results of the system include the following and can be seen in the Data Analysis subsystem:

• Average number of batches waiting for water
• Average number of batches waiting for heat
• Average number of batches waiting for draining
• Utilization of batch reactors
• Utilization of water supply
• Utilization of heat supply
• Utilization of draining facility
• Throughput of type A batch
• Throughput of type B batch

open_system([modelname '/Data Analysis/Waiting For Water']);
open_system([modelname '/Data Analysis/Waiting For Heat']);
open_system([modelname '/Data Analysis/Waiting For Drain']);
open_system([modelname '/Data Analysis/Utilization Reactors']);
open_system([modelname '/Data Analysis/Utilization Water']);
open_system([modelname '/Data Analysis/Utilization Heaters']);
open_system([modelname '/Data Analysis/Utilization Drains']);
open_system([modelname '/Data Analysis/ThroughputA']);
open_system([modelname '/Data Analysis/ThroughputB']);

 Optimization of Shared Resources in a Batch Production Process

6-105

6 Learning More About SimEvents Software

6-106

 Optimization of Shared Resources in a Batch Production Process

6-107

6 Learning More About SimEvents Software

6-108

 Optimization of Shared Resources in a Batch Production Process

6-109

Optimizing Resource Capacities

We will now apply a Genetic Algorithm solver from the MATLAB Global Optimization Toolbox to this
SimEvents model to find optimal resource capacities for this system. The genetic algorithm solves
optimization problems by repeatedly modifying a population of individual points. Due to its random
nature, the genetic algorithm improves your chances of finding a global solution. It does not require
the functions to be differentiable or continuous.

The decision variables in this optimization are:

• Number of batch reactors
• Number of water tanks
• Number of heaters
• Number of drains

The genetic algorithm sets these variables as it runs multiple simulations of the model via the
variable ResourceCapacity. The starting values of resource capacities are shown below:

cellfun(@(x)close_system(x), scopes);

disp('ResourceCapacity before optimization =');
disp(ResourceCapacity);
close_system([modelname '/Data Analysis/Order Backlog']);
ResourceCapacity = seRunOptimizationForBatchProductionProcess();
disp('ResourceCapacity after optimization =');
disp(ResourceCapacity);

ResourceCapacity before optimization =
 2 2 2 2

Starting parallel pool (parpool) using the 'local' profile ...
Connected to the parallel pool (number of workers: 6).

6 Learning More About SimEvents Software

6-110

Optimization terminated: average change in the penalty fitness value less than options.FunctionTolerance
and constraint violation is less than options.ConstraintTolerance.
Elapsed time is 112.822855 seconds.
Parallel pool using the 'local' profile is shutting down.
ResourceCapacity after optimization =
 13 2 4 2

Apply Optimization Results

We can now resimulate after applying the results of the optimization process back to the model to see
that this significantly reduced the order backlog.

sim(modelname);
open_system([modelname '/Data Analysis/Order Backlog']);

 Optimization of Shared Resources in a Batch Production Process

6-111

%cleanup
bdclose(modelname);
clear model scopes

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-112

Modeling a Kanban Production System

Overview

This example shows a production system that uses kanbans to manage production activities. Analysis
of simulation results highlights problems in the system and suggests ways to improve its
performance.

Structure of the Model

The modeled production system includes two part suppliers and an assembly line. The part suppliers
use raw materials to manufacture parts. Finished parts are transported to the assembly line to
fabricate final products. Completed products are shipped to distributors to fill production orders.

At the top level of the model:

• The Generate Production Orders subsystem simulates the generation of production orders.
• The Assembly Line subsystem fills a production order by assembling two types of parts (referred

to as part A and part B) into final products.
• The Part A Supplier subsystem and Part B Supplier subsystem manufacture the parts needed for
final assembly.

• The Material A Supplier subsystem and Material B Supplier subsystem replenish the raw
materials consumed during parts production.

Kanban Circulation

"Kanban" comes from the Japanese word for "signboard". A kanban production system is a pull
system that determines its production according to the actual demand of the customers. These

 Modeling a Kanban Production System

6-113

systems use kanbans as demand signals that propagate through the production system to trigger and
regulate production activities, such as processing and storage.

This model simulates the circulation of two types of kanbans: withdrawal kanbans and work-in-
process kanbans.

• Withdrawal kanbans manage inventory. Withdrawal kanbans grant the right to withdraw parts
from part suppliers to replenish inventory. Factory workers cannot remove the withdrawal kanban
from a part in the existing inventory until the part is consumed. During production, the number of
withdrawal kanbans issued for a type of parts is fixed. This limits the inventory size for that type
of part.

• Work-in-process kanbans manage production. Work-in-process kanbans grant the right to
manufacture parts in type and quantity as specified. After a part is produced, factory workers
cannot remove the work-in-process kanban from the part until the part is withdrawn for final
assembly. During production, the number of work-in-process kanbans issued for a type of parts is
fixed. This limits the number of parts being processed by a part supplier.

Circulation of withdrawal kanbans for part A is modeled by the following blocks and subsystems:

• Resource Acquirer block labeled Obtain Withdrawal Kanban in Part A Supplier subsystem
• Resource Releaser block labeled Release Withdrawal Kanban A in Assembly Line subsystem
• Resource Pool block labeled Withdrawal Kanban A

The figures below show the Part A Supplier subsystem and Assembly Line subsystem.

6 Learning More About SimEvents Software

6-114

During simulation, the block labeled Obtain Withdrawal Kanban in the Part A Supplier subsystem
must obtain a withdrawal kanban before a part A is transported and stored for final assembly. When a
part A in storage is consumed in final assembly, the block labeled Release Withdrawal Kanban A in
the Assembly Line subsystem releases the withdrawal kanban. The kanban then returns to the block
labeled Obtain Withdrawal Kanban to allow replenishment of part A inventory.

Circulation of work-in-process kanbans is modeled in the same fashion as withdrawal kanbans. For
example, in the Part A Supplier subsystem, the block labeled Obtain Work-in-process Kanban requests
a work-in-process kanban upon producing a part A. After the part is completed and withdrawn, the
block labeled Release Work-in-process Kanban releases the work-in-process kanban. The kanban then
returns to the block labeled Obtain Work-in-process Kanban to allow the production of more of part A.

The model uses Resource Pools to model the group of kanbans. To learn about this technique, see
“Resource Allocation from Multiple Pools” on page 6-56.

Dropped Orders

A kanban production system reduces cost and waste by limiting inventories of work-in-process stock
and finished products. However, when product demand fluctuates, lack of inventory may cause
dropped orders.

This model simulates dropped orders caused by seasonal demand fluctuations. In the Generate
Production Orders subsystem, the Output Switch block labeled Place Orders uses First port
that is not blocked as its switching criterion. During simulation, the block tries to send an
order to the Assembly Line subsystem. If the inventory of finished product is empty, the block
labeled Fill Production Order in the Assembly Line subsystem does not accept this order. The
block labeled Place Orders then drops this order by forwarding it to the Entity Sink block labeled
Dropped Orders.

 Modeling a Kanban Production System

6-115

Results and Displays

During simulation, the Data Display subsystem displays these scopes to show the performance of the
production system:

• Part A Withdrawal Kanban Backlog
• Part B Withdrawal Kanban Backlog
• Number of Part A in Process
• Number of Part B in Process
• Number of Products in Final Assembly
• Number of Part A in Storage
• Number of Part B in Storage
• Product Demand
• Number of Dropped Orders
• Number of Completed Orders

A Display block at the root level of the model provides a numeric view of the number of orders
completed and the number of orders dropped.

Experimenting with the Model

(For use with live model only)

• Open the configuration dialog for product demand by double-clicking a configuration block in the
colored region labeled Distributor. Change product demand by changing the Daily product
demand in each month of the year parameter in this dialog.

• Open the configuration dialog for the kanban system by double-clicking a configuration block in
the colored region labeled Production System. Change the number of withdrawal kanbans and
work-in-process kanbans issued for the production system by changing the parameters in this
dialog.

6 Learning More About SimEvents Software

6-116

• Open the configuration dialog for production capability by double-clicking a configuration block in
the colored region labeled Production System. Change the time it takes to manufacture, transport,
and assemble parts or final products by changing the parameters in this dialog.

• Open the configuration dialog for the material suppliers by double-clicking a configuration block
in the colored region labeled Material Supplier. Change the time it takes to produce and deliver
raw materials by changing the parameters in this dialog.

Using the Model for Performance Analysis

The model with the original configuration represents a kanban production system with significant lost
sales in months when demand is at a peak. Analysis of simulation results suggests solutions to
address this issue.

The following steps show how the solutions are developed.

Step 1: Run the simulation using the original configuration. As shown in the figures below, the scope
labeled Number of Dropped Orders indicates that the production system suffers significant lost sales
between day 90 and day 150 of the year. Comparing this result with the scope labeled Product
Demand indicates that lost sales happen when product demand is at a peak.

 Modeling a Kanban Production System

6-117

Step 2: Comparing the demand in peak season with product supply indicates the assembly line does
not provide sufficient production capability. According to the scope labeled Product Demand (see the
figure above), 10 products are needed daily between day 90 and day 150. In contrast, as illustrated
by the scope labeled Number of Products in Final Assembly (see the figure below), in the same period
of time, only about 5 are in production every day - much less than the quantity in demand.

Step 3: Further observation of simulation results indicates that the inventory of part B is insufficient
in the peak season. As illustrated by the scope labeled Number of Part B in Storage (see the figure
below), inventory is empty in the peak season. This explains the inadequacy in the production
capability during final assembly - the assembly line is not provided with sufficient part B.

6 Learning More About SimEvents Software

6-118

Step 4: Simulation results related to part B indicate that the use of withdrawal kanbans for part B is
low in the peak season. This is displayed by the scope labeled Number of Part B Withdrawal Kanban
in Use shown in the figure below.

Use of withdrawal kanbans is reduced when the assembly line requests a replenishment but the part
supplier fails to respond to this request in time. This leads to an analysis of the production capability
of part B in the peak season of the year.

Step 5: The visual observations in the earlier steps suggest this quantitative analysis:

• According to the scope labeled Product Demand, ten final products are required daily in the
peak season.

• Since 1 final product is assembled from one Part B and one Part A, to fully satisfy demand, ten
Part Bs, are needed for final assembly per day. That is:

 Part B demand = 10 /day

 Modeling a Kanban Production System

6-119

• According to production capability configurations, it takes the part supplier 1.5 days to produce
one part B. According to kanban system configurations, 12 work-in-process kanbans are issued for
part B. This limits the maximal number of parts produced in parallel to 12. Thus, the maximal
production rate of part B is:

 Maximal part B production rate = 12/1.5 = 8 /day

Step 6: Comparing demand and maximal production rate of part B indicates the inadequacy in
production capacity. Two possible solutions are:

• Issue more work-in-process kanbans for part B to allow more parts to be produced in parallel. To
increase the maximal production rate of part B to above 10, issue at least 3 more work-in-process
kanbans.

• Reduce production cycle of part B to increase production rate. Production cycle needs to shorten
by at least 0.3 day to meet required production rate.

Step 7: To verify solution 1, reconfigure the kanban system by increasing the Number of work-in-
process kanbans for part B parameter to 15. Simulation results indicate that with such an update,
fifteen part Bs are produced in parallel (see the scope labeled Number of Part B in Process below). As
indicated by the scope labeled Number of Dropped Orders, the increase in part B supply eliminates
the occurrence of dropped orders.

6 Learning More About SimEvents Software

6-120

To verify solution 2, starting from the original configuration, reconfigure production capability by
reducing the Time it takes to produce a part B parameter to 1.2 day. With the increase in
production capability, 10 final products are in assembly daily (see the scope labeled Number of
Products in Final Assembly below). As illustrated in the scope labeled Number of Dropped Orders
below, such production capability can fully satisfy product demand, resulting in no loss of sales over
the year.

 Modeling a Kanban Production System

6-121

The above steps explore the root cause of lost sales due to seasonal fluctuation in product demand.
Quantitative analysis suggests two solutions to respond to such demand fluctuations. Simulation
verifies that both solutions can indeed help the production system avoid seasonal lost sales.

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-122

Job Scheduling and Resource Estimation for a Manufacturing
Plant

Overview

This example shows you how to model a manufacturing plant. The plant consists of an assembly line
that processes jobs based on a pre-determined schedule. This example walks you through a workflow
for:

• Analyzing the impact of job schedule on throughput
• Estimating the number of workers

Structure of the Model

The manufacturing plant caters to the production of 40 different product variants based on pre-
defined schedules. Each variant requires two parts, PartA and PartB that correspond to that
particular variant. Each part goes through a sequence of manufacturing steps. The following
modeling details are specified in an Excel file that are read during model initialization:

• Schedule of part arrival in the plant
• Operation times for variants at each station along the assembly line
• Number of workers in different worker pools
• Rejection rate at the inspection area

The following script reads the excel file and initializes all the parameters.

% Initialization of variables used in the model
excelFile = 'seEstimatingAssemblyLineThroughput.xlsx';

schedule = xlsread(excelFile, 'MfgSchedule');
optimes = xlsread(excelFile, 'OperationTimes');
parameters = xlsread(excelFile, 'Parameters');

numMfgWorkers = parameters(1); % number of workers in Manufacturing area
numInspectWorkers = parameters(2); % number of workers in Inspection area
discard_rate = parameters(4)/100; % quality rejection rate
seed = 12345; % random number seed
modelname = 'seEstimatingAssemblyLineThroughput';
open_system(modelname);
scopes = find_system(modelname,'LookUnderMasks','on','BlockType','Scope');
cellfun(@(x)close_system(x), scopes);

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-123

The manufacturing plant mainly consists of two areas:

• The Manufacturing area
• The Inspection area

The Manufacturing area: The plant receives job orders that are to be fulfilled. A job order specifies
the variant ID and the required quantity for that particular variant. The Entity Generators generate
parts based on a pre-defined sequence that satisfies the job order. In this example the sequence is
either generated from a MATLAB script or is read from the excel sheet. The following script reads the
job order requirements from the excel file.

requirements = xlsread(excelFile, 'Requirements');

To manufacture a particular variant, PartA and PartB that correspond to the variant are brought in
together into the manufacturing area. The parts go through the following steps before leaving the
manufacturing area:

1 PartA goes through Blanking operation
2 PartB goes through Milling operation
3 Both the parts are then fastened
4 The assembly then goes through a Finishing operation

Average operation completion times for each variant are tabulated in the excel sheet. A 4% variation
in operation completion times is assumed. Workers from the manufacturing worker pool load and
unload parts from the Milling and Fastening machines.

open_system([modelname '/Milling Operation1']);

6 Learning More About SimEvents Software

6-124

close_system([modelname '/Milling Operation1']);

The Inspection area: The finished product enters the Inspection area, where the product is either
certified to be ok or is rejected and scrapped. This example assumes a 5% rejection rate in the
inspection area. Workers from the inspection worker pool load and unload parts from the three
inspection machines.

open_system([modelname '/Inspection Machines']);

close_system([modelname '/Inspection Machines']);

Analyzing The Impact of Job Schedule on Throughput

To meet the job order requirements with the best throughput, different schedules can be generated.
In this example, throughput is the total number of good products produced by the plant. The sheet
named 'MfgSchedule' shows a few schedules that satisfy the job order. Following scripts generate job
schedules based on certain criteria:

• Schedule 1: Shortest job first on the Blanking machine:

This schedule puts the operation having shortest running time on the Blanking machine first and the
longest one at the end. The idea here is to push as many parts into the plant as early as possible. The
throughput is then examined:

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-125

idx = 1;
S1 = sortrows(optimes(:, [1 2]), 2);
for i = 1:length(S1)
 repeat = requirements(S1(i), 2);
 for j = 1:repeat
 newSchedule(idx) = S1(i);
 idx = idx + 1;
 end
end
scheduleID = size(schedule, 2) + 1;
schedule(:, scheduleID) = newSchedule';
sim(modelname);
open_system([modelname '/Good Parts Generated']);

close_system([modelname '/Good Parts Generated']);

• Schedule 2: Shortest job first on the Milling machines:

This schedule puts the operation having the shortest running time on the Milling machines first and
the longest one at the end. The idea again is to push as many parts into the plant as early as possible
from the other starting branch of the plant. The throughput is then examined:

6 Learning More About SimEvents Software

6-126

idx = 1;
S2 = sortrows(optimes(:, [1 3]), 2);
for i = 1:length(S2)
 repeat = requirements(S2(i), 2);
 for j = 1:repeat
 newSchedule(idx) = S2(i);
 idx = idx + 1;
 end
end
scheduleID = size(schedule, 2) + 1;
schedule(:, scheduleID) = newSchedule';
sim(modelname);
open_system([modelname '/Good Parts Generated']);

close_system([modelname '/Good Parts Generated']);

• Schedule 3: Shortest job first on the Fastening machine:

This schedule puts the operation having shortest running time on the Fastening machine first and the
longest one at the end. The idea here is to push parts out of the bottleneck machine as early as
possible. The throughput is then examined:

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-127

idx = 1;
S4 = sortrows(optimes(:, [1 5]), 2);
for i = 1:length(S4)
 repeat = requirements(S4(i), 2);
 for j = 1:repeat
 newSchedule(idx) = S4(i);
 idx = idx + 1;
 end
end
scheduleID = size(schedule, 2) + 1;
schedule(:, scheduleID) = newSchedule';
sim(modelname);
open_system([modelname '/Good Parts Generated']);

close_system([modelname '/Good Parts Generated']);%%

• Schedule 4: Shortest job first using the cumulative manufacturing time:

This schedule takes into account the cumulative run time on all the machines. The operation having
the shortest cumulative run time is put first and the longest one goes to the end. The throughput is
then examined:

6 Learning More About SimEvents Software

6-128

idx = 1;
cumulativeSum = sortrows([optimes(:, 1) sum(optimes(:, [2 3 5 6]), 2)], 2);
for i=1:length(cumulativeSum)
 repeat = requirements(cumulativeSum(i), 2);
 for j = 1:repeat
 newSchedule(idx) = cumulativeSum(i);
 idx = idx + 1;
 end
end
scheduleID = size(schedule, 2) + 1;
schedule(:, scheduleID) = newSchedule';

sim(modelname);
open_system([modelname '/Good Parts Generated']);

close_system([modelname '/Good Parts Generated']);

• Schedules 5 to 8: Random schedules:

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-129

Schedules 5 to 8 in the excel sheet are all random schedules which satisfy the job order. These
schedules can be generated by starting from any schedule and generating a random permutation
using the RANDPERM function. Following are the results for 'Schedule 8':

scheduleID = 9;
sim(modelname);
open_system([modelname '/Good Parts Generated']);

close_system([modelname '/Good Parts Generated']);

Simulating all of the above strategies suggests that the schedule associated with 'Shortest
job first on the Fastening Machine', 'Schedule 3' gives us the best throughput.

Estimating the Number of Workers

After selecting the best schedule, an estimate of the number of workers needed in the two worker
pools is made. We start with three workers working in the Manufacturing area and three in the
Inspection area.

numMfgWorkers = 3;
numInspectWorkers = 3;

6 Learning More About SimEvents Software

6-130

sim(modelname);
open_system([modelname '/Manufacturing Workers in Use']);
open_system([modelname '/Inspection workers in Use']);
open_system([modelname '/Good Parts Generated']);

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-131

6 Learning More About SimEvents Software

6-132

close_system([modelname '/Manufacturing Workers in Use']);
close_system([modelname '/Inspection workers in Use']);
close_system([modelname '/Good Parts Generated']);

From the scopes we see that the maximum number of workers in the Manufacturing and Inspection
pools used at any given point in time rarely exceeds two. Reducing the number of workers to two
shows that there is no impact on throughput with better worker utilization.

numMfgWorkers = 2;
numInspectWorkers = 2;

sim(modelname);
open_system([modelname '/Manufacturing Workers in Use']);
open_system([modelname '/Inspection workers in Use']);
open_system([modelname '/Good Parts Generated']);

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-133

6 Learning More About SimEvents Software

6-134

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-135

close_system([modelname '/Manufacturing Workers in Use']);
close_system([modelname '/Inspection workers in Use']);
close_system([modelname '/Good Parts Generated']);

Conclusion

This example shows how we can use SimEvents to model a job shop. The use of MATLAB scripts
allows us to experiment and arrive at the best schedule.

% The following script closes and cleans up the model
bdclose(modelname);
clear numMfgWorkers numInspectWorkers modelname excelFile ...
 scheduleID discard_rate scopes schedule requirements ...
 seed optimes parameters;

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

6 Learning More About SimEvents Software

6-136

Related Examples
• “Resource Allocation Modeling”
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36

 Job Scheduling and Resource Estimation for a Manufacturing Plant

6-137

Modeling Load Within a Dynamic Voltage Scaling Application

Overview

This example shows how, depending on the workload, a AT90S8535 microcontroller uses a dynamic
voltage scaling (DVS) feature to adjust the input voltage. By lowering the input voltage when the
workload is low, the microcontroller reduces energy consumption while guaranteeing quality of
service. The DVS controller is based on an online gradient estimation technique called infinitesimal
perturbation analysis (IPA). In a single simulation of a parameterized system, not the large number of
simulations required by a traditional finite-difference approach, IPA can provide sensitivity
information that yields a first-order approximation of the system performance metrics as a function of
the parameters.

Applying IPA to the Controller

The performance metric to minimize is the average cost per job, given by

where

• is the average service time of a job, which is a function of the input voltage V. That is, finding the
optimal value of also yields the optimal value of V.

• is a weighting constant.

• is the average energy consumption of a job in Joules.

• is the average system time for jobs, which measures quality of service. This model uses an
M/M/1 queuing system, so a closed-form expression for provides a way to compare the IPA
results in the simulation with theoretical results.

• and are device-dependent constants.

• is the device minimum input voltage.

To find a value of for which is 0, this model uses a gradient method with constant step size
. The th iteration of the optimization, which occurs upon the departure of the th job,

uses the estimate to produce

To learn about the IPA estimation of , see the works listed in References.

Structure of the Model

The model includes these components:

6 Learning More About SimEvents Software

6-138

• Job Arrivals section: Provides source of jobs that form the workload

• FIFO Queue, Single Server, and other blocks in the blue section: Provides queuing for jobs in the
system

• DVS Optimizer subsystem: Uses the queue length, value, service time for the latest job, and
total number of jobs to compute and the corresponding updated input voltage.

Results and Displays

The model includes these visual ways to understand its performance:

• A dynamic plot showing how the DVS controller varies the voltage during the simulation to reduce
the average cost per job.

• A Display block that shows the average service time for jobs.

• A Display block that shows the corresponding input voltage.

To experiment, try changing the value of the Avg Interarrival Time block before running the
simulation.

 Modeling Load Within a Dynamic Voltage Scaling Application

6-139

References

[1] Cassandras, C. G., and S. Lafortune. Introduction to Discrete Event Systems. Boston, MA: Kluwer
Academic Publishers, 1999.

[2] Li, W., C. G. Cassandras, and M. I. Clune. "Model-Based Design of a Dynamic Voltage Scaling
Controller Based on Online Gradient Estimation Using SimEvents." Proceedings of 45th IEEE
Conference on Decision and Control. 2006, pp. 6088-6092.

[3] Weiser, M., B. Welch, A. Demers, and S. Shenker. "Scheduling for Reduced CPU Energy."
Proceedings of the 1st Symposium on Operating Systems Design and Implementation. 1994, pp.
13-23.

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Adjust Entity Generation Times Through Feedback” on page 6-11
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-140

Modeling Machine Failure

Overview

This example shows how to model random failures and scheduled maintenance of a machine during
regular operation. In the model, the machine can transition between three different states.

• Regular operation
• Planned maintenance
• Random failure

In the regular operation state, the machine acquires a worker and processes raw materials to
produce finished products. In the planned maintenance state, the machine gets into a service mode,
and after a fixed service time it returns to regular operation. The machine can also sporadically
breakdown and enter a random failure state. The breakdown repair time is also random and the
machine returns to regular operation after the repair is complete. During the planned maintenance
and the random failure states the machine acquires a serviceman.

After fixing a sporadic machine failure, the following options are available to continue operation.

1 The operation resumes with the existing semi-processed material in the machine.
2 The operation resumes by discarding the semi-processed material as a waste and by taking the

next raw material for processing.

Structure of the Model

The model contains the following major components.

• Raw Material Source: Generates raw materials periodically to be sent to the storage.
• Material Storage: Represents the storage space of the raw materials.
• Maintenance Scheduler: Generates an entity to trigger a scheduled machine maintenance.
• Machine: Models a machine which can receive entities from Maintenance Scheduler and

transitions between regular operation, planned maintenance and random failure states.
• Store: Represents the departure of all finished goods.
• Worker pool: Represents the available worker resource for regular operation.
• Serviceman Pool: Represents the available service man resource for scheduled maintenance and

failure repair.
• AnimateControl: Models the switch to turn the animation on or off.

 Modeling Machine Failure

6-141

Structure of the Machine Block

The Machine block contains two Discrete-Event chart blocks, namely 'breakdownGenerator' and
'operatingStates' along with the Resource Acquirer and the Resource Releaser blocks.

• Breakdown Generator: Sends a message, 'breakdown', to indicate the breakdown of the
machine and accepts a message, 'repairDone', that indicates the completion of the repair. Random
'breakdown' messages are generated from a gaussian distribution.

• Operating States: Encapsulates three possible Machine block states which are
'breakdownAction', 'operationAction' and 'maintenanceAction'. On entering any of these states,
the first action is to acquire the required resource and proceed with further actions.

6 Learning More About SimEvents Software

6-142

Operating States

• Breakdown: When entering the 'breakdownAction' state, the machine requests a serviceman who
performs the repair action. After the repair is complete, the machine releases any acquired
resources, and prepares to exit the 'breakdownAction' state. The random time spent for a repair is
generated from a gaussian distribution. If the machine breakdown interrupts any ongoing process,
after the repair, the machine either terminates it to start a new process or resumes the
interrupted process. If a scheduled maintenance overlaps with a breakdown repair time,
additional time is taken to complete the maintenance.

• Maintenance: When entering the 'maintenanceAction' state, the machine requests a serviceman
who performs the service action. After the service is complete, the machine releases any acquired
resources and exits the 'maintenanceAction' state. If a breakdown repair time overlaps with a
service time, additional time is taken to repair the machine. In the event of a scheduled
maintenance, the machine waits to complete any pending operations and only after their
completion it enters the 'maintenanceAction' state.

• Machine Operation: When entering the 'operationAction' state, the machine requests a worker
before proceeding with its operation. Then the machine fetches raw materials and switches to the
processing state. After the processing is complete in a fixed duration, the machine releases the
finished product and switches back to an idle state during which it waits for raw material. If the
operation state is interrupted by a breakdown event, you can specify the action of the machine to
resume or to terminate the operation after the repair.

 Modeling Machine Failure

6-143

Model Parameters

• Processing Time: Time required to process the raw material to a finished product.
• Maintenance Time: Time required to service the machine during periodic maintenance.
• Mean time between failures (MTTF) : Average time between two consecutive breakdowns.

Breakdowns are random events that are generated from a gaussian distribution.
• Standard deviation in failure: Standard deviation of the gaussian distribution representing

breakdowns.
• Mean time to repair (MTTR): Average time to repair a machine in a breakdown state. Random

repair time is generated from a gaussian distribution.
• Standard deviation in repair: Standard deviation of the gaussian distribution representing the

repair time.
• Resume operation post repair: Checkbox to resume any pending operations in the machine

after a breakdown. Otherwise, the materials are discarded and a new operation starts.

Visualization

Enabling the toggle switch labeled 'AutomationControl' allows you to visualize the machine
operations listed below.

• Raw materials are transferred to the storage, sent to the machine's processing queue, and
processed by the machine into a finished product.

• Machine acquires a worker from the worker pool to operate. The worker is sent back to the pool
during breakdown or maintenance.

• Machine acquires a serviceman from the pool in the event of a breakdown or a maintenance.
When the service or repair is complete, the serviceman is sent back to the pool.

• The material is sent to the waste bin to be discarded.
• The animation displays the quantity of the materials that are unloaded, in storage, wasted and

processed.

6 Learning More About SimEvents Software

6-144

• The animation also displays the quantity of available workers and serviceman.

See Also
Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Discrete-Event Chart Precise Timing” on page 8-7
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-10
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

 Modeling Machine Failure

6-145

Inventory Management

Description

This example shows how to build a simple inventory management system for a retail store. This
example includes:

• Random customer arrivals to the store with the number of products requested by each customer
also randomly distributed

• Tracking available inventory at the end of the day
• Tracking and disposal of expired products
• Placing periodic orders for fresh products
• Store profitability analysis

Structure of the Model

The model includes these components:

• Warehouse: The warehouse generates and stores products in shelves. The products have limited
shelf life and they are dispatched when a product order is received. During the generation
process, products are marked with their manufacture day, and they are periodically checked for
disposal if their storage duration exceeds the maximum days they are allowed to stay on the shelf.
Warehouse component allows you to specify the initial quantity of available products and the
maximum number of days they are allowed to remain on the shelf.

6 Learning More About SimEvents Software

6-146

• Transportation: The Transportation block represents the delay, which is the duration between a
product's dispatch from the warehouse and its arrival at the store. The default delay is set to two
hours.

• Customer Arrival: The arrival of customers at the store is modeled as a Poisson process and you
can specify the mean time between arrivals. The number of products required by each customer is
also random and it is generated from a discrete uniform distribution. You can specify the upper
bound of this uniform distribution.

• Store Management:

• Store Tag: This area models the part of the retail store that receives products from the
warehouse and applies the 'Product' and 'Expiry' tags on them. These tags allow us to search for
products later on.

 Inventory Management

6-147

• Customers Entry: Represents customers entering the store to pick up products from the shelves
and their departure from the store. This is modeled using the 'Entity Find' block, which looks for
entities in the system that have the 'Product' tag associated with them.

• Store Shelf: This area contains a Queue where the products are stored. Customers pick up
products from here. An 'Entity Gate' that is perpetually closed ensures that products don't flow out
of the store.

• Expired Products Removal: This area models the periodic removal of expired products from the
store's shelves. This is modeled using the 'Entity Find' block. The find block is triggered
periodically to perform a search for entities that have the 'Product' tag associated with them. It
then looks for products that have exceeded the shelf life and discards them.

• Accounting: This area models the investigation of profitability of the retail store for the duration
between consecutive product ordering points. The profit is calculated as a function of the product
procurement price, product holding cost and the product selling price. The profit also plays a role
in determining the number of products that the retail store orders. If the store is profitable in the
current period, then the new quantity to be ordered is the sum of the previously ordered quantity
plus any unfulfilled orders. This is also adjusted for expired and unsold products.

• Periodic Order Placement: This area models periodic order placement by the retail store. An
order is placed with the Warehouse for supplying a fresh batch of products to the retail store. You
can specify the period by setting the value of the reorder point.

Results

The model is simulated for 60 days. One unit of simulation time represents 1 minute of wall clock
time. Based on the model parameters set, plots are generated showing the number of products sold,
the number of customers who arrived at the store, the product order size, number of expired
products in the store and the store's profitability. Observe that for each period, the optimal store
order quantity is around 85 for the given customer arrival rate.

See Also
Entity Generator | Entity Server | Queue | Resource Pool | Resource Acquirer | Resource Releaser

Related Examples
• “Create a Discrete-Event Model”
• “Manage Entities Using Event Actions”
• “Entity Priorities” on page 1-36
• “Resource Allocation Modeling”

6 Learning More About SimEvents Software

6-148

Modeling Cyber-Physical Systems

Cyber-physical systems combine computer and physical systems to achieve design goals. Simulation
of cyber-physical systems requires a combination of modeling techniques such as continuous-time,
discrete-time, discrete-event, and finite state modeling. Simulink® and its companion products
provide functionality to apply a wide range of modeling techniques and seamlessly integrate them in
one simulation environment, which is ideal for modeling cyber-physical systems.

This example shows how continuous-time, discrete-event, and finite-state modeling techniques
combine to simulate the behavior of a variable speed conveyor belt system. In SimEvents®, entities
are discrete items of interest in a discrete-event simulation. Because passengers are discrete
individuals, they are modeled by SimEvents® entities, created by the Entity Generator block. A
Stateflow® chart models the operational modes and motor dynamics of the variable speed conveyor
belt. Finally, the Entity Transport Delay block models passenger throughput as a function of conveyor
belt dynamics, providing a bridge between the discrete-event and continuous-time domains.

Note: The example uses blocks from SimEvents® and Stateflow®. If you do not have a SimEvents or
Stateflow license, you can open and simulate the model but only make basic changes such as
modifying block parameters.

Model Structure

The model includes these key components:

 Modeling Cyber-Physical Systems

6-149

• Passengers — Models the arrival of passengers as a Poisson process. The output is a sequence of
SimEvents® entities corresponding to the passengers who step on the conveyor belt. The
distribution of inter-arrival time () of a Poisson process is , where is the
arrival rate. is modeled by a MATLAB action in the Entity Generator block for rush hour, normal
hour, and free hour. The passenger arrival rate changes with time as:

• Entity Transport Delay — Holds the passengers on the conveyor belt until they arrive at the
other terminal, based on the time delay calculated by the Stateflow chart.

• Dynamics of conveyor belt — Models the operation of a variable speed conveyor belt. See the
Conveyor Belt Dynamics section for more details.

• Dashboard — Shows the runtime status of the conveyor belt. The color of the Mode Lamp
indicates the mode of the conveyor belt.

6 Learning More About SimEvents Software

6-150

Conveyor Belt Dynamics

A Stateflow® chart models the dynamics of the variable speed conveyor belt. Note in the chart that
the velocity and power of the belt are plotted against a logarithmic scale of the load weight. The
conveyor belt has these modes:

• Idle — The weight of the load is small. The belt maintains a low velocity to save energy. The Mode
Lamp is gray in this mode.

 Modeling Cyber-Physical Systems

6-151

• OnDemand — This is the normal operating mode, which maintains the optimal velocity for
passenger comfort and throughput. The power will proportionally increase with the weight of the
load. The Mode Lamp is green in this mode.

• Max — Maximum power mode. The weight of the load is too large for the conveyor belt to
maintain the optimal velocity. The conveyor belt operates at the maximum possible velocity that
does not exceed the maximum power. The Mode Lamp is red in this mode.

Results

The Scope and blocks in the DashBoard show the simulation results.

Simulation results: 1. Number of passengers versus simulation time. 2. Velocity (blue) and power
(red) versus simulation time.

Three operation cycles are observed within a time span of 900. Each cycle has a period of 300, which
aligns with the period of the arrival rate. The top plot shows the number of passengers on the
conveyor belt over time, and the bottom plot shows the velocity and power of the conveyor belt. The
velocity and power are normalized for better visualization.

The first two thirds of each period correspond to rush hour, and the number of passengers on the
conveyor belt increases dramatically. Consequently, the conveyor belt enters into the Max mode
quickly, which is characterized by the maximum output power with a velocity that is inversely
proportional to the number of passengers. In the last third of each period, the airport is in the normal
hour followed by the free hour. Therefore, the number of passengers on the conveyor belt drops and
even becomes zero for some time.

6 Learning More About SimEvents Software

6-152

The conveyor belt then operates in OnDemand and Idle modes accordingly. In OnDemand mode,
the velocity is locked to a default value, and the power is proportional to the number of passengers.
In Idle mode, both the velocity and power are maintained at low values to reduce energy
consumption. Overall, the conveyor belt operates according to the load of the airport.

 Modeling Cyber-Physical Systems

6-153

802.11 MAC and Application Throughput Measurement

This example shows how to measure the MAC and application layer throughput in a multi-node
802.11a/n/ac/ax network using SimEvents®, Stateflow®, and WLAN Toolbox™. The system-level
model presented in this example includes functionalities such as configuring the priority of the traffic
at the application layer, capability to generate and decode waveforms of Non-HT, HT-MF, VHT, HE-SU
and HE-EXT-SU formats, MPDU aggregation and enabling block acknowledgment of MPDUs. The
application layer throughput calculated using this model is validated against published calibration
results from the TGax Task Group [4] for Box 3 scenarios (Tests 1a, 1b, and 2a) specified in TGax
evaluation methodology [3]. The obtained application layer throughput is within the range of
minimum and maximum throughput specified in published calibration results [4].

Throughput in 802.11 Networks

The IEEE® 802.11™ working group is continually adding features to 802.11 specification [1] to
improve the throughput and reliability in WLAN networks. Throughput is the amount of data
transmitted over a period of time. Medium Access Control (MAC) layer throughput refers to the
amount of data successfully transmitted by the MAC layer over a period of time. MAC protocol data
unit (MPDU) is the unit of transmission at MAC layer. In 802.11n, MPDU aggregation was introduced
to increase the throughput. When MPDU aggregation is supported, MAC layer aggregates multiple
MPDUs into an aggregated MPDU (A-MPDU) for transmission. This reduces the overhead of channel
contention for transmitting multiple frames, resulting in enhanced throughput. In 802.11ac [1] and
802.11ax [2], the maximum limits for an A-MPDU length were increased resulting in even better
throughput in WLAN networks.

Model 802.11 Network

This example models a WLAN network with five nodes as shown in this figure. These nodes
implement carrier-sense multiple access with collision avoidance (CSMA/CA) with physical carrier
sense and virtual carrier sense. The physical carrier sensing uses the clear channel assessment (CCA)
mechanism to determine whether the medium is busy before transmitting. Whereas, the virtual
carrier sensing uses the RTS/CTS handshake to prevent the hidden node problem.

The model in the example displays various statistics such as the number of transmitted, received, and
dropped packets at PHY and MAC layers. Moreover, the runtime figures that help in analyzing/
estimating the node-level and network-level performance are also displayed in this model. This model
is validated against the published calibration results from the TGax Task Group [4] for Box 3
scenarios (Tests 1a, 1b, and 2a) specified in TGax evaluation methodology [3].

WLAN Network

6 Learning More About SimEvents Software

6-154

Components of a WLAN Node

The components of a WLAN node are shown in this figure. The information is retrieved by pressing
the arrow button for each node in the above figure.

Application, EDCA MAC, PHY, and Channel Block Capabilities

Application:

The application layer has the capability to generate data with different priority levels as shown in this
figure. These priority levels are configured using Access Category property in the mask
parameters of the Application Traffic Generator block inside a WLAN node. You can also configure
the packet size, inter-packet interval, and destination node for the application layer.

 802.11 MAC and Application Throughput Measurement

6-155

EDCA MAC:

The EDCA MAC block used in this example has the following capabilities:

• Generate and decode MAC frames of high efficiency single user (HE-SU), high efficiency extended
range single user (HE-EXT-SU), very high throughput (VHT), high throughput mixed format (HT-
MF) and Non-HT formats. These formats are configured using the PHY Tx Format property in
the mask parameters of the MAC EDCA block inside a WLAN node as shown in this figure.

• Aggregate MPDUs to form an A-MPDU. This can be configured by setting PHY Tx Format to one
of HT-MF, VHT, HE-SU, or HE-EXT-SU. In case of HT-MF, MPDU Aggregation property must also
be enabled for A-MPDU generation.

• Acknowledge multiple MPDUs in an A-MPDU with a single block acknowledgment (BA) frame.
MAC assumes a pre-configured BA session between the transmitter and the receiver of an A-
MPDU.

• Enable/disable acknowledgments. This can be configured using the Ack Policy property.
• Maintain separate retry limits for shorter frames (less than RTS threshold) and longer frames

(greater than or equal to RTS threshold). These limits can be configured using the Max Short
Retries and Max Long Retries properties.

• Transmit multiple streams of data using the multiple-input multiple-output (MIMO) capability. You
can configure this capability using the Number of Transmit Chains property. This property is
applicable only when the value of PHY Tx Format property is set to VHT, HE-SU, or HE-EXT-SU.
The MIMO capability can also be used for HT format through the MCS property. The range of
values [0, 7], [8, 15], [16, 23], and [24, 31] correspond to one, two, three, and four streams of data
respectively.

• Adapt the data rate according to the channel conditions through the Rate Adaptation
Algorithm property. This is applicable only when the value of PHY Tx Format property is set to
Non-HT. You can choose between Auto Rate Fallback (ARF) and Minstrel algorithms. To
maintain a constant data rate throughout the simulation, Fixed-Rate option is available.

6 Learning More About SimEvents Software

6-156

PHY:

The PHY Transmitter and PHY Receiver blocks have the capability to generate and decode waveforms
of Non-HT, HT-MF, VHT, HE-SU and HE-EXT-SU formats. You can configure the transmit gain and
transmit power using the Tx Gain and Tx Power properties in the mask parameters of the PHY
Transmitter block inside a WLAN node.

 802.11 MAC and Application Throughput Measurement

6-157

Similarly, you can configure the receive gain and receive noise figure using the Rx Gain and Rx
Noise Figure properties in the mask parameters of the PHY Receiver block inside a WLAN node.

Channel:

6 Learning More About SimEvents Software

6-158

Channel impairments determined by free-space path-loss model and Rayleigh multipath fading are
added to the transmitted PHY waveform. You can choose to enable or disable these impairment
models. In addition to the impairment models, the signal reception range can also be limited by an
optional range propagation loss model. To model any of these losses, the channel model must contain
both the sender and receiver positions along with the transmitted signal strength. The channel is
modeled inside each receiving node, before passing the waveform to the PHY Receiver block.

Throughput Measurement

Throughput varies for different configuration parameters pertaining to the application, MAC & PHY
layers. Any change in the configuration may either increase or decrease the throughput. You can vary
the combination of these parameters to measure and analyze the throughput.

• MCS: PHY data rate
• PHY Tx Format: PHY transmission format
• Packet Size: Application packet size
• Max A-MPDU Subframes: Maximum number of subframes in an A-MPDU
• Max Tx Queue Size: MAC transmission queue size

Along with above parameters, you can also vary the node positions, Tx & Rx gains, channel loss,
number of nodes in the network, MAC contention parameters, number of transmit chains and rate
adaptation algorithms to analyze MAC throughput. This example demonstrates the measurement and
analysis of the MAC throughput by varying packet size in the Application Traffic Generator
block.

Application Packet Size

Throughput is directly proportional to the application packet size. Smaller packet size results in
greater number of packets to be transmitted. At the MAC layer, there is an overhead of contention
time for each transmitted packet. This is because the MAC layer makes sure that the channel is idle

 802.11 MAC and Application Throughput Measurement

6-159

for a specific amount of time (Refer section 10.3.2.3 of [1]) before transmitting any packet.
Therefore, as the packet size decreases, the contention overhead increases resulting in lower
throughput.

Model Configuration

You can configure the application packet size using these steps:

1 Open model WLANMACThroughputMeasurementModel.slx
2 To go inside a node subsystem, click on the downward arrow at the bottom left of the node
3 To open mask parameters of the application, double click on Application Traffic

Generator
4 To enable application, set App State to 'On'
5 Configure the value of Packet Size

Run the simulation and observe the throughput. The TGax calibration results for test-1a in [4] are
shown below:

The above plot compares the calibration results for WLAN Toolbox against the published results of
other companies listed in [4]. The blue colored curve represents the results of WLAN Toolbox, while
the grey colored curves represent the results of other companies.

Simulation Results

The simulation of the model generates:

6 Learning More About SimEvents Software

6-160

1 A run-time visualization showing the time spent on channel contention, transmission, and
reception for each node

2 An optional run-time visualization (during the simulation) showing the number of frames queued
in MAC transmission queues for a selected node.

3 A bar graph showing metrics for each node such as number of transmitted, received, and
dropped packets at PHY and MAC layers

4 A MAT file statistics.mat with detailed statistics obtained at each layer for each node

This figure shows MAC state transitions with respect to simulation time.

You can also observe the live state of the MAC layer transmission buffers using the 'Observe MAC
queue lengths' button in the above visualization.

 802.11 MAC and Application Throughput Measurement

6-161

This figure shows the network statistics at the end of simulation.

6 Learning More About SimEvents Software

6-162

Validating Application Layer Throughput with TGax Calibration Results

The TGax Task Group [4] published application throughput results for different scenarios. You can
observe the Layer 3 (above MAC layer) throughput of each node in the network in 'Throughput'
column in 'statisticsTable' stored in 'statistics.mat'. The TGax calibration scenarios for MAC simulator
published results of application throughput for a User Datagram Protocol (UDP) with Logical Link
Control (LLC) layers overhead.

To calculate application throughput from simulation results use the code below:

% Load statistics.mat (Output of the simulation) file
simulationResults = load('statistics', 'statisticsTable');
% Statistics
stats = simulationResults.statisticsTable;

% Successfully transmitted MAC layer bytes in the network
totalMACTxBytes = sum(stats.MACTxBytes);

% UDP & LLC overheads (bytes)
udpOverhead = 36;
llcOverhead = 8;

% UDP & LLC overhead (bytes) in the network
udpAndLLCOverhead = sum(stats.MACTxSuccess)*(udpOverhead + llcOverhead);

% Successfully transmitted application bytes

 802.11 MAC and Application Throughput Measurement

6-163

totalAppTxBytes = totalMACTxBytes - udpAndLLCOverhead;

% Time at which last transmission is completed in the network (Microseconds)
simulationTime = max(stats.MACRecentFrameStatusTimestamp);

% Application throughput (Mbps)
applicationThroughput = (totalAppTxBytes*8)/simulationTime;
disp(['Application Throughput = ' num2str(applicationThroughput) ' Mbps']);

Application Throughput = 4.7276 Mbps

The application throughput for different TGax calibration scenarios is plotted against different MAC
service data unit (MSDU) sizes for a simulation time of 30 seconds as shown below:

6 Learning More About SimEvents Software

6-164

 802.11 MAC and Application Throughput Measurement

6-165

6 Learning More About SimEvents Software

6-166

 802.11 MAC and Application Throughput Measurement

6-167

Further Exploration

Configuration options

You can change these configuration parameters to further explore this example:

• Application layer: Access category and packet interval
• MAC layer: RTS threshold, Tx queue size, data rate, short retry limit, long retry limit, transmitting

frame format, MPDU aggregation, ack policy, number of transmit chains and the rate adaptation
algorithms

• PHY: PHY Tx gain, PHY Rx gain, and Rx noise figure
• Channel modeling: Rayleigh fading, free space pathloss, range propagation loss and packet

receive range
• Node positions using node position allocator
• The state of each node can be visualized during the run-time through the configuration available

in the Visualizer block
• By default, the PHY transmitter and the receiver blocks run in the Interpreted execution

mode. For longer simulation time, configure all the blocks to Code generation mode for better
performance.

Related examples

Refer these examples for further exploration:

6 Learning More About SimEvents Software

6-168

• To model a multi-node IEEE 802.11ax network with abstracted PHY using SimEvents, refer
“802.11ax System-Level Simulation with Physical Layer Abstraction” (WLAN Toolbox) example.

• To get started on modeling a multi-node IEEE 802.11 network using MATLAB, refer “Get Started
with WLAN System-Level Simulation in MATLAB” (WLAN Toolbox)

• To model a multi-node IEEE 802.11ax residential scenario using MATLAB, refer “802.11ax
Multinode System-Level Simulation of Residential Scenario” (WLAN Toolbox)

This example enables you to create and configure a multi-node 802.11 network using a Simulink
model for analyzing the MAC and application layer throughput. In this model, the MAC throughput
obtained through the simulation results is used to calculate the application layer throughput. This
model is validated using the Box 3 scenarios (Tests 1a, 1b, and 2a) specified in TGax evaluation
methodology [3] to confirm that it complies with the IEEE 802.11 [1]. This example concludes that
the calculated application layer throughput is within the range of minimum and maximum throughput
specified in published calibration results [4].

Appendix

The helper functions and objects used in this example are:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.
3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 helperAggregateMPDUs.m: Generate an A-MPDU, by creating and appending the MPDUs

containing the MSDUs in the MSDULIST.
8 helperSubframeBoundaries.m: Return subframes information of an A-MPDU.
9 phyRx.m: Model PHY operations related to packet reception.
10 phyTx.m: Model PHY operations related to packet transmission.
11 edcaApplyFading.m: Apply Rayleigh fading effect on the waveform.
12 heSIGBUserFieldDecode.m: Decode HE-SIG-B user field.
13 heSIGBCommonFieldDecode.m: Decode HE-SIG-B common field.
14 heSIGBMergeSubchannels.m: Merge 20MHz HE-SIG-B subchannels.
15 addMUPadding.m: Add multiuser PSDU padding.
16 macQueueManagement.m: Create a WLAN MAC queue management object.
17 roundRobinScheduler.m: Create a round-robin scheduler object.
18 calculateSubframesCount.m: Return number of subframes to be aggregated.
19 interpretVHTSIGABitsFailCheck.m: Interprets the bits in VHT-SIG-A field
20 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
21 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific

 802.11 MAC and Application Throughput Measurement

6-169

Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

2 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

3 IEEE 802.11-14/0571r12. "11ax Evaluation Methodology." IEEE P802.11P: Wireless LANs.
4 Baron, Stephane., Nezou, Patrice., Guignard, Romain., and Viger, Pascal. "MAC Calibration

Results." Presentation at the IEEE P802.11 - Task Group AX, September 2015.

6 Learning More About SimEvents Software

6-170

802.11ax System-Level Simulation with Physical Layer
Abstraction

This example demonstrates how to model a multi-node IEEE® 802.11ax™ [1] network with
abstracted physical layer (PHY) using SimEvents®, Stateflow®, and WLAN Toolbox™. A PHY
abstraction model largely reduces the complexity and the duration of system-level simulations by
replacing the actual physical layer computations. This makes it possible to evaluate systems
consisting of large number of nodes, resulting in increased scalability. Abstracted PHY models signal-
power, gain, delay, loss and interference on each packet without generating physical layer packets, as
specified by the TGax Evaluation Methodology [3].

Physical Layer Abstraction

This example shows how to model an 802.11ax network with abstracted PHY. The example presents a
variation of the system model used in the example “802.11 MAC and Application Throughput
Measurement” (WLAN Toolbox). In “802.11 MAC and Application Throughput Measurement” (WLAN
Toolbox) example, full PHY processing is modeled where waveforms are generated and decoded at
the physical layer. However, this example models an abstracted PHY where no waveforms are
generated or decoded. Abstracting the physical layer reduces the time taken for simulation at the
cost of fidelity. Fidelity refers to the degree of exactness with which the PHY is modeled in the
simulation. Simulations that tolerate low fidelity at the physical layer can use the abstracted PHY
model.

The abstracted PHY operates on pre-computed packet error rate (PER) tables and equations. These
tables and equations are used to estimate the corrupted packet without any actual modulation or
demodulation of packets, resulting in a low fidelity model. Refer the example “Physical Layer
Abstraction for System-Level Simulation” (WLAN Toolbox) for more details related to the PHY
abstraction.

Abstracted Physical Layer Blocks

This section explains the blocks used for modeling the abstracted PHY and how it fits into the 802.11
[2] network model. Full PHY modeling involves operations related to waveform transmission and
reception through a fading channel. Abstracted PHY models signal-power, gain, delay, loss and
interference on each packet without generating physical layer packets. This example provides a PHY
Transmitter, a Statistical Channel, and a PHY Receiver for modeling an abstracted PHY.
These blocks are available in the library wlanAbstractedPHYLib.

Abstracted PHY Transmitter:

The Abstracted PHY Transmitter block models the transmit chain of the physical layer. This
block consumes the frame and corresponding transmission parameters from the MAC layer.
Parameters like transmit power, preamble duration, header duration and payload duration are
calculated in the block. This information is passed along with the MAC frame as the metadata to
simulate the transmission of a waveform.

 802.11ax System-Level Simulation with Physical Layer Abstraction

6-171

Interfaces to the Abstracted PHY Transmitter block are:

• MACToPHYReq: Triggers for indicating transmission start/end requests from MAC layer
• FrameToPHY: MAC frame to be transmitted
• PhyTxConfirms: Confirmation triggers to MAC layer for indicating completion of MAC layer

requests
• Waveform: Abstract waveform transmitted into the channel (MAC frame and the metadata)

Statistical Channel:

The Statistical Channel block models pathloss, propagation delay, and reception range of the
packet. To enable the estimation of loss, delay, and range at each receiver, the Statistical
Channel block must be modeled inside every node coupled with the Abstracted PHY Receiver.
Propagation delay is applied on each received packet, and the signal strength of each packet is
degraded with optional pathloss. If the receiving node is within the range, the packet is forwarded to
the Abstracted PHY Receiver with the effective signal strength. The packet is dropped if the
receiving node is outside the range of the transmitter.

Interfaces to the Statistical Channel are:

• WaveformIn: Input packet received from a PHY transmitter
• WaveformOut: Output packet intended for PHY receivers after applying channel loss

Abstracted PHY Receiver:

The Abstracted PHY Receiver block models the receive chain of the physical layer. This block
receives and processes the packet based on the received metadata. The Abstracted PHY
Receiver block models interference based on the packets received at overlapping timelines. The
received packets are processed only at these checkpoints: (a) End of the preamble duration (b) End of

6 Learning More About SimEvents Software

6-172

each subframe duration in the payload for aggregated frames (or) end of the payload duration for
non-aggregated frames.

This block also provides an option for configuring the level of abstraction through the PHY
Abstraction mask parameter. You can configure it to 'TGax Evaluation Methodology
Appendix 1' [3] to predict the performance of a link with a TGax channel model using effective
SINR mapping. Details of this procedure can be found in the example “Physical Layer Abstraction for
System-Level Simulation” (WLAN Toolbox). Alternatively, you can configure it to 'TGax Simulation
Scenarios MAC Calibration' [4] to assume a packet failure on interference, without actually
calculating the link performance. Note that the option 'TGax Evaluation Methodology
Appendix 1' works for only MCS values in the range [0-9], as the TGax Evaluation Methodology
[3] is defined only for these values.

Interfaces to the Abstracted PHY Receiver block are:

• PHYMode: Trigger for switching off the receiver function when transmission is in progress
• Waveform: Abstract waveform received from the channel (MAC frame and the metadata)
• RxIndications: Triggers to MAC for indicating channel state shift (busy/idle) events or receive

(start/end) events
• FrameToMAC: Received MAC frame

System-Level Simulation

This example simulates a network with 10 nodes in the model, WLANMultiNodeAbstractedPHYModel,
as shown in this figure. These nodes implement carrier-sense multiple access with collision avoidance
(CSMA/CA) with physical carrier sense and virtual carrier sense. The physical carrier sensing uses
the clear channel assessment (CCA) mechanism to determine whether the medium is busy before
transmitting. The virtual carrier sensing uses the RTS/CTS handshake to prevent the hidden node
problem.

 802.11ax System-Level Simulation with Physical Layer Abstraction

6-173

The positions for all the nodes in the network are configured through the node position allocator
(NPA) block in the model. The state of each node can be visualized during run-time through the
configuration available in the Visualizer block. The Channel Matrix block is a Data Store
Memory. On initialization, a TGax channel realization is generated between each pair of nodes in the
network and the resulting channel matrix per subcarrier is stored in the block. During the simulation,
each receiver node accesses the memory to obtain the channel matrix between itself and a
transmitting node to determine the link quality. In this model, nodes 1, 2, 3, 6, 7, and 8 act as both
the transmitters and receivers, while nodes 4, 5, 9, and 10 are just passive receivers.

Node Subsystem

Each node in the above model is a subsystem representing a WLAN device. Each node contains an
application layer, a MAC layer and a physical layer. The physical layer is modeled using the
abstracted PHY blocks described in the previous section. You can configure a node to transmit and
receive packets on a specific channel (frequency) by changing the Multicast tag parameter of the
Entity Multicast and the Multicast Receive Queue blocks. By default, all nodes operate on
the same channel. You can also configure the receive range for a specific node using the Packet
Receive Range parameter of the Statistical Channel block.

You can easily switch between abstracted PHY blocks available in the wlanAbstractedPHYLib and full
PHY processing blocks available in the wlanFullPHYLib.slx library of the example “802.11 MAC
and Application Throughput Measurement” (WLAN Toolbox). The interfaces to the transmitter,
receiver and channel blocks remain the same. By default, the abstracted PHY blocks run in the
Interpreted execution mode. For longer simulation time, configure all the blocks to Code
generation mode for better performance.

6 Learning More About SimEvents Software

6-174

Simulation results

Running the model simulates the WLAN network for the specified simulation time. A plot with
network-level statistics (corresponding to MAC layer) is generated at the end of simulation. Detailed
node-level statistics (corresponding to application, MAC, and physical layers) are collected during the
simulation and saved to a base workspace file statistics.mat. You can also enable an optional live
visualization, to see the state of each node during run-time, through the mask configuration of the
Visualizer block.

 802.11ax System-Level Simulation with Physical Layer Abstraction

6-175

Scalability

The above model shows a network of 10 nodes. You can create a network with a large number of
nodes by using the hCreateWLANNetworkModel function. This helper function uses the node
subsystem from this example and creates a network of WLAN nodes positioned linearly 10 meters
apart from each other. You can create different simulation scenarios and analyze the node-level or
network-level statistics with varying number of nodes. For example, the plot below shows the
retransmissions and successful transmissions relative to the total transmissions, as the number of
nodes in the network increase. The configuration parameters used for collecting the results are:

• Format: HE-SU
• Modulation and coding scheme (MCS) index: 0
• Number of subframes in A-MPDU: 1

6 Learning More About SimEvents Software

6-176

• Distance between nodes: 10 meters
• Path loss: Not applied
• PHY abstraction type: "TGax Evaluation Methodology Appendix 1"
• Range propagation: All the nodes are within range of each other
• Operating frequency: All the nodes operate in the same frequency

The plot below shows that the simulation runs faster with abstracted PHY as compared to full PHY
processing, thus making it more scalable. The configuration parameters used for collecting the
performance results are:

• Format: HE-SU
• Modulation and coding scheme (MCS) index: 0
• Number of subframes in A-MPDU: 2
• Distance between nodes: 1 meter
• Path loss: Not applied
• PHY abstraction type: "TGax Evaluation Methodology Appendix 1"
• Range propagation: All nodes are within range of each other
• Operating frequency: All the nodes operate in the same frequency
• Simulation mode: Code generation mode for all the blocks
• Simulation time: 5 seconds

 802.11ax System-Level Simulation with Physical Layer Abstraction

6-177

• Packet generation interval: 0.001 seconds

This example explained the physical layer abstraction and demonstrated a 10-node WLAN network
with abstracted PHY. This example shows that a network simulation with abstracted PHY is faster and
more scalable compared to using full PHY processing.

Further Exploration

In this example, the A-MPDUs exchanged between the nodes are deaggregated to MPDUs at the
receiving node. These MPDUs are exported to packet capture (PCAP) and packet capture next
generation (PCAPNG) format file using the pcapDump DES block. To use the pcapDump DES block, go
to wlanSystemLevelComponentsLib

Export to PCAP/PCAPNG Format File

The PCAP/PCAPNG format files contain the packet data of the network. These files are mainly
associated with network analyzers like Wireshark [5], a third party tool used to visualize and analyze
PCAP/PCAPNG files. The main advantages of using PCAP/PCAPNG files during system level
simulations are:

• Monitor the network traffic.
• Visualize and analyze the network characteristics of the data.

To duplicate the MAC layer input entities (received A-MPDUs, FrameToMAC, and PhyRxIndicator
vector) and output entities (transmitted A-MPDUs, FrameToPHY, and MACReqToPHY vector), use the

6 Learning More About SimEvents Software

6-178

Entity Replicator blocks. The MAC layer provides RxFrameToPCAP, PhyIndToPCAP,
TxFrameToPCAP, and MACReqToPCAP as inputs to the pcapDump DES block.

The pcapDump DES block contains two input ports, one for Tx/Rx A-MPDUs and other for Tx/Rx
information.

Select the capture format as pcap or pcapng. As the simulation starts, the packets exchanged
between the nodes are logged into the selected capture format file.

To capture the packet, double click the pcapDump DES block and select the parameter Capture as
Enable.

 802.11ax System-Level Simulation with Physical Layer Abstraction

6-179

A new capture file (PCAP/PCAPNG format) is created for every node. The file name corresponds to
name of the node. If name of the node is Node1, the captured file name is Node1.pcap or
Node1.pcapng.

Appendix

The example uses these helpers:

1 edcaFrameFormats.m: Create an enumeration for PHY frame formats.
2 edcaNodeInfo.m: Return MAC address of a node.
3 edcaPlotQueueLengths.m: Plot MAC queue lengths in the simulation.
4 edcaPlotStats.m: Plot MAC state transitions with respect to simulation times.
5 edcaStats.m: Create an enumeration for simulation statistics.
6 edcaUpdateStats.m: Update statistics of the simulation.
7 helperSubframeBoundaries.m : Return subframe boundaries of an A-MPDU.
8 phyTxAbstracted: Model PHY operations related to packet transmission
9 phyRxAbstracted: Model PHY operations related to packet reception
10 channelBlock: Model the channel for a node
11 addMUPadding.m: Add or remove the padding difference between an HE-SU and HE-MU PSDU
12 macQueueManagement.m: Create a WLAN MAC queue management object
13 roundRobinScheduler.m: Create round-robin scheduler object
14 calculateSubframesCount.m: Calculate the number of subframes required to form MU-PSDU
15 hCreateWLANNetworkModel: Create a WLAN network with given number of nodes
16 hDisplayNetworkStats: Display network level statistics
17 hSetupAbstractChannel: TGax channel setup

6 Learning More About SimEvents Software

6-180

18 createRadiotapHeader: Create a radiotap header
19 rateAdaptationARF.m: Create an auto rate fallback (ARF) algorithm object.
20 rateAdaptationMinstrelNonHT.m: Create a minstrel algorithm object.

References

1 IEEE Std 802.11ax™-2021. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications - Amendment 1: Enhancements for High-Efficiency WLAN.

2 IEEE Std 802.11™-2020. IEEE Standard for Information Technology - Telecommunications and
Information Exchange between Systems - Local and Metropolitan Area Networks - Specific
Requirements - Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY)
Specifications.

3 IEEE 802.11-14/0571r12 - 11ax Evaluation Methodology.
4 IEEE 802.11-14/0980r16 - TGax Simulation Scenarios.
5 Wireshark - Go Deep. https://www.wireshark.org/. Accessed 9 Dec. 2019.

 802.11ax System-Level Simulation with Physical Layer Abstraction

6-181

https://www.wireshark.org/

Use SimEvents with Simulink

• “Working with SimEvents and Simulink” on page 7-2
• “Solvers for Discrete-Event Systems” on page 7-5
• “Model Simple Order Fulfilment Using Autonomous Robots” on page 7-7

7

Working with SimEvents and Simulink
You can exchange data between SimEvents and Simulink environments. However, time-based signals
and SimEvents signals have different characteristics.

Exchange Data Between SimEvents and Simulink
Use Simulink Function blocks in SimEvents models:

• To read or write attributes of entities.
• To send messages that trigger other events.
• To exchange data between event and time domain sections of a model.

Use Message Send and Receive blocks to send and receive messages between Simulink and
SimEvents blocks.

Time-Based Signals and SimEvents Block Transitions
Time-based signals and SimEvents signals have different characteristics. Here are some indications
that a time-based signal is automatically converted into a SimEvents signal, or conversely:

• You want to connect a time-based signal to an input port of a SimEvents block.
• You are using data from a SimEvents block to affect time-based dynamics.
• You want to perform a computation involving both time-based signals and SimEvents output.

When the transition occurs, a capital E appears on the line.

SimEvents Support for Simulink Subsystems
You can use SimEvents blocks (discrete-event blocks) without restriction in Simulink Virtual
Subsystems, and in Simulink Nonvirtual Subsystems, observing some specific guidelines.

For more information about Simulink subsystems, see Subsystem, Atomic Subsystem, Nonvirtual
Subsystem, CodeReuse Subsystem.

Discrete-Event Blocks in Virtual Subsystems

You can use discrete-event blocks without restriction in a virtual subsystem.

Discrete-Event Blocks in Nonvirtual Subsystems

When you use discrete-event blocks in an atomic subsystem, follow these guidelines:

• The entire discrete-event subsystem, which includes all discrete-event blocks, must reside entirely
within the atomic subsystem. You cannot route entities into, or out of, the atomic subsystem.

• If you want to connect two or more atomic subsystems that contain discrete-event blocks, each
atomic subsystem must meet all the preceding conditions.

For more information about atomic subsystems, see Subsystem, Atomic Subsystem, Nonvirtual
Subsystem, CodeReuse Subsystem.

7 Use SimEvents with Simulink

7-2

Discrete-Event Blocks in Variant Subsystems

You can use discrete-event blocks in a variant subsystem. The software permits both entities and
time-based signals to enter and depart a virtual variant.

However, if you use an atomic subsystem as a variant, or within a variant, then that atomic subsystem
must obey the rules for using discrete-event blocks in nonvirtual subsystems. These rules are
described in “Discrete-Event Blocks in Nonvirtual Subsystems” on page 7-2. An atomic subsystem is
the only type of nonvirtual subsystem that can contain discrete-event blocks, even when the
nonvirtual subsystem is contained within a variant subsystem.

The SimEvents software does not support setting the Variant activation time parameter to code
compile for these blocks:

• Variant Subsystem
• Variant Sink
• Variant Source

Save Simulation Data
Behavior of the To Workspace Block

The To Workspace block writes event-based signals to the MATLAB workspace when the simulation
stops or pauses. One-way to pause a running simulation is to select Pause under the Debug tab.

Send Queue Length to the Workspace

The example shows one way to write the times and values of signals to the MATLAB workspace. In
this case, the signal is the n output from an Entity Queue block, which indicates how many entities
the queue holds.

You can use different time formats in the To Workspace block to display the data.

To record entities and their attributes passing along an entity line, consider connecting a To
Workspace block to that entity line.

Data Logging

You can log data from your SimEvents model using Simulink. For more information, see “Save Run-
Time Data from Simulation”.

See Also
Simulink Function | Message Send | Message Receive

 Working with SimEvents and Simulink

7-3

Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components”
• “Events and Event Actions” on page 1-2
• “Generate Entities When Events Occur” on page 1-13

More About
• “Solvers for Discrete-Event Systems” on page 7-5

7 Use SimEvents with Simulink

7-4

Solvers for Discrete-Event Systems

In this section...
“Variable-Step Solvers for Discrete-Event Systems” on page 7-5
“Fixed-Step Solvers for Discrete-Event Systems” on page 7-5

Depending on your configuration, you can use both variable-step and fixed-step solvers with discrete-
event systems. To choose solver settings for your model, navigate to the Solver pane of the model
Configuration Parameters dialog box.

When choosing a solver type for your model, use the following guidelines:

• If your model contains only event-based computation and excludes continuous and discrete time-
based computation, choose the variable-step, discrete solver. In this case, if you select a variable-
step continuous solver, the software detects that your model does not contain any blocks with
continuous states (Simulink blocks) and automatically switches the solver to discrete (no
continuous states). When the software makes this change, it notifies you with a message in
the MATLAB command window.

• If your discrete-event system is within a Simulink model that also contains time-based modeling,
choose either a variable-step or fixed-step solver, depending on your simulation requirements. For
each solver type, the following sections describe the behavior of discrete-event systems when
contained within such models.

Variable-Step Solvers for Discrete-Event Systems
If your discrete-event system is within a Simulink model that contains time-based modeling, and you
choose a variable-step solver for the model, the Simulink solver has a major time step each time the
discrete-event system processes events.

The following graphic illustrates the behavior of the variable-step solver when used with a discrete-
event system contained within a Simulink model.

Fixed-Step Solvers for Discrete-Event Systems
If you have a discrete-event system within a Simulink model that includes time-based modeling, you
can choose a fixed-step solver for the model.

 Solvers for Discrete-Event Systems

7-5

When you use a fixed-step solver, the simulation still executes events in the discrete-event system at
the times at which they occur. However, these events do not cause the Simulink solver to have sample
hits at those times. The software insulates the discrete-event system from the time-based portions of
the Simulink model.

The following graphic illustrates the behavior of the fixed-step solver when used with a discrete-event
system.

See Also

More About
• “Compare Solvers”
• “Working with SimEvents and Simulink” on page 7-2

7 Use SimEvents with Simulink

7-6

Model Simple Order Fulfilment Using Autonomous Robots
This example models a warehouse with autonomous robots for order management. The goal of the
example is to show how to facilitate complex models created with Simulink, Stateflow, and SimEvents
components and their communication via messages. See “View Differences Between Stateflow
Messages, Events, and Data” (Stateflow) for more information about messages.

Order Fulfilment Model

Order fulfilment model has two major components

• The Order Queue component represents an online order queue with the blocks from the
SimEvents® library.

• The Warehouse component represents delivery of order items by autonomous robots. It uses
blocks from Simulink® and SimEvents® libraries and a Stateflow® chart. The chart requires a
Stateflow® license.

In this model, an online order for multiple items arrives at the Order Queue component. The locations
of the ordered items are communicated from the Processing Order block to the autonomous robots in
the Warehouse component. Three robots are assigned to three aisles. A robot picks up an item from
its aisle location and returns it to its initial location for delivery. An order can have one, two, or three

 Model Simple Order Fulfilment Using Autonomous Robots

7-7

items. When all ordered items are delivered by the robots, the order is complete and a new order
arrives. Until an order is complete, no new orders are received to the Order Queue component.

Warehouse Component
The warehouse has three aisles. The first aisle contains clothing items, the second aisle contains toys,
and the third aisle contains electronics. Three delivery robots are identical and their dynamics are
driven by a linear time-invariant system that is controlled by a tuned PID controller. For instance, the
Aisle1 subsystem block consists of a Robot1 subsystem and a Discrete-Event Chart block as a
scheduler.

Robot1 Subsystem

The Robot1 subsystem has a generic feedback control loop with the dynamics of the robot
represented by the State-Space block and the PID controller.

The Robot1 subsystem is designed to track a reference signal from the In1 block, which is the out
signal from the Discrete-Event Chart block. The system compares the input value with the output
from the State-Space block and the difference between signals is fed to the PID Controller block.

For instance, if the signal from the In1 block is a constant with value 10, starting from the initial state
0, the output of the system converges to 10.

7 Use SimEvents with Simulink

7-8

In the x-axis and y-axis, Robot1 moves as follows.

• Robot1 is initially at x1 and y1 = 0 coordinate. For item pickup and delivery, it moves only on the
y-axis and its x1 coordinate remains the same.

• Each order item in Aisle1 has a yaisle coordinate on the y-axis. yaisle becomes the constant input
reference signal to be tracked by Robot1 subsystem.

• When Robot1 subsystem reaches yaisle, it picks up the order item and autonomously reruns back
to y1 = 0 location for delivery.

The scope displays an example trajectory for Robot1 subsystem, which receives a yaisle value 10 as
the constant reference input at simulation time 265. When the distance between the robot's location
and y = 10 is 0.1, reference input signal is 0 and the robot returns to its initial location for delivery.

 Model Simple Order Fulfilment Using Autonomous Robots

7-9

Robot2 subsystem and Robot3 subsystem have identical dynamics and behavior for the item delivery
in Aisle2 subsystem and Aisle3 subsystem. Their x coordinates are x2 and x3 and they also move on
the vertical y-axis.

Scheduler

In the previous example trajectory, Robot1 has three states. The Discrete-Event Chart block is used to
schedule the transitions between these robot states.

• A robot waits in the Wait state, until it receives a yaisle item coordinate. Robot1 subsystem is in
the Wait state, until the simulation time is 265.

• A robot transitions to the PickUp state, when there is an incoming message carrying the yaisle
value of an item to the Discrete-Event Chart block. This value is assigned to out, which is the
output signal from the Discrete-Event Chart block. The out signal is fed to the Robot1 subsystem
as the input signal In1 to be tracked and the robot moves towards the yaisle item location. Robot1
subsystem transitions to the PickUp state at time 265.

• When a robot is 0.1 units away from yaisle, it picks up the item. Then, the robot transitions to a
Deliver state. The out signal becomes 0 and the robot returns back to y = 0 for delivery. At the
simulation time 290, Robot1 subsystem is 0.1 unit away from y = 10 and transitions to the
Deliver state.

• When a robot returns and it is 0.1 units away from y = 0, it transitions to the Wait state. At
around 320, Robot1 subsystem delivers the item and transitions back to the Wait state.

7 Use SimEvents with Simulink

7-10

Order Package Preparation
1 When a robot delivers its item, the item is sent to generate the order package. This behavior is

represented by the Message Send block that generates a message inside the Item from Aisle
Simulink Function block. Then, the generated message enters the Entity Queue block.

2 A Composite Entity Creator block waits for all three items from the three Entity Queue blocks to
create a composite entity that represents the order.

To complete the order, all of the items from the three aisles are required to be delivered.
3 When all the items are delivered, the order is complete and it arrives at the Package Ready block.
4 The entry of the order to the Package Ready block triggers the Simulink Function1 block to

generate a message and to open the gate for order termination.
5 When the order is terminated, a new order arrives at the Processing Order block which restarts

the delivery process.

Until an order is complete, no new orders are received, so the robots that deliver their items wait for
the order to be completed.

 Model Simple Order Fulfilment Using Autonomous Robots

7-11

Order Queue Component
The order queue block is a simple queuing system composed of an Entity Generator, Entity Queue,
Entity Server, Entity gate, and Entity Terminator block. For more information about creating a simple
queuing system, see “Manage Entities Using Event Actions”.

1 Entity Generator block randomly generates orders. The intergeneration time is drawn from an
exponential distribution with mean 100.

2 Each generated entity has three randomly generated attributes aisle1, aisle2, and aisle3
that represent the yaisle coordinates of the items in Aisle1, Aisle2, and Aisle3 subsystems.

entity.Aisle1 = randi([1,30]);
entity.Aisle2 = randi([1,30]);
entity.Aisle3 = randi([1,30]);

It is assumed that the items are located vertically between y = 1 and y = 30.
3 The arrival of the order to the Entity Server block activates the robots by communicating the

items' yaisle coordinates. Entering this MATLAB code in the Entry action field.

LocateAisle1(entity.Aisle1);
LocateAisle2(entity.Aisle2);
LocateAisle3(entity.Aisle3);

Calling the LocateIsle() function communicates the yaisle coordinate of an item to the
corresponding robot.

4 The order waits in the Entity Server block until the Entity Gate block opens.
5 When all items are delivered, the order package enters the Package Ready block and its entry

calls the Simulink Function1 block through the function ordercomplete(). The Simulink
Function1 block generates a message to open the gate.

6 When the gate opens, the order is terminated and a new order arrives at the Entity Server block.

Results
Inspect the order throughput from the Order Queue.

1 Increase the simulation time to 1000.
2 Simulate the model and observe that the scope displays 7 as the total number of completed

orders.

7 Use SimEvents with Simulink

7-12

See Also
Entity Server | Entity Generator | Entity Queue | Entity Terminator | Discrete-Event Chart

Related Examples
• “Create a Hybrid Model with Time-Based and Event-Based Components”

More About
• “Working with SimEvents and Simulink” on page 7-2
• “Solvers for Discrete-Event Systems” on page 7-5

 Model Simple Order Fulfilment Using Autonomous Robots

7-13

Build Discrete-Event Systems Using
Charts

• “Create Custom Queuing Systems Using Discrete-Event Stateflow Charts” on page 8-2
• “Discrete-Event Chart Precise Timing” on page 8-7
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-10
• “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-19

8

Create Custom Queuing Systems Using Discrete-Event
Stateflow Charts

The Discrete-Event Chart block is similar to a Stateflow chart but is used for discrete events. You can
use the block to receive, process, and send SimEvents entities. The Discrete-Event Chart block
provides graphical state transitions and MATLAB action language to create custom SimEvents
models.

The distinguishing characteristic of the Discrete-Event Chart block is that it executes in an event-
based rather than time-based fashion. To model custom discrete-event systems, use these Discrete-
Event Chart block behaviors:

• Precise timing — The time resolution for occurrence of events can be arbitrarily precise and is not
limited by the sample time of the model.

For more information, see “Discrete-Event Chart Precise Timing” on page 8-7.
• Trigger on arrival — The block executes immediately on message arrival. It does not wait for the

next sample time hit.

For more information, see “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-
10.

• Variable execution order — The block does not have a fixed sorted execution order. The order of
execution depends on the run-time conditions of the model.

For more information, see “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-19.
• Multiple executions per time step — The block can execute zero or multiple times in a single time

step.

For more information, see “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-19.

Note With SimEvents software, you can view, edit, and simulate your Discrete Event Chart custom
block within a SimEvents example model. However, to save the model you must have a Stateflow
license.

For new models, without a Stateflow license, you can view and edit the model, but cannot simulate or
save it.

The entities you use with discrete-event charts can be bus objects or anonymous entities.

Properties of Discrete-Event Chart

Discrete-event chart properties allow you to specify how your chart interfaces with Simulink and
SimEvents. These properties are a subset of the Stateflow chart properties.

To specify properties for a single chart:

1 Double-click a chart.

8 Build Discrete-Event Systems Using Charts

8-2

2 Right-click an open area of the chart and select Properties.

All charts provide general and documentation properties.
3 Observe that the chart allows the configuration of only these properties on the General tab. It

also supports the Fixed-point properties and Documentation tabs.

For more information about chart properties, see “Specify Properties for Stateflow Charts”
(Stateflow).

Note SimEvents supports only MATLAB action language and always supports variable-size arrays.

Define Local Messages

Similar to the Stateflow chart, you can define local messages for the discrete-event chart using the
Stateflow Editor or Model Explorer.

To add a local message for the discrete-event chart:

1 Select Symbols Pane and Create Message.
2 Select Local Message and rename it to EntityOut.
3 To specify local message queue properties, such as capacity, sorting policy, and overflow behavior

right-click EntityLocal and select Inspect to open Property Inspector.

 Create Custom Queuing Systems Using Discrete-Event Stateflow Charts

8-3

Specify Message Properties

Discrete-event charts have additional properties for output messages and local messages.

Message Input Port
Properties

Description

Priority If two message events occur at the same time, to decide which to
process first, the discrete-event chart uses this priority. A smaller
numeric value indicates a higher priority.

Event Triggering
An event in Stateflow is an object that trigger actions. For more information, see “Synchronize Model
Components by Broadcasting Events” (Stateflow).

SimEvents Discrete-Event Chart support a subset of these events:

• Message
• Temporal
• Local
• Implicit Events, enter, exit, on, change

SimEvents Discrete-Event Chart does nor support these events:

• Conditions without an event
• during, tick
• Event input from Simulink
• Event output to Simulink

Note The SimEvents event calendar displays and prioritizes message, and temporal events. Events of
these types execute according to the event calendar schedule.

The event calendar does not display or prioritize local and implicit events. In the SimEvents
environment, these events execute as dependent events of message or temporal events. For parallel
states, local and implicit events execute in the state execution order.

8 Build Discrete-Event Systems Using Charts

8-4

Message Triggering
When a message or entity arrives at a message input or local queue, the discrete-event chart
responds to the message as follows:

• If the discrete-event chart is in a state of waiting for a message, the discrete-event chart wakes up
and makes possible transitions. The chart immediately wakes up in order of message priority,
processing the message with the highest priority first. For an example, see “Trigger a Discrete-
Event Chart Block on Message Arrival” on page 8-10.

• If the discrete-event chart does not need to respond to the arriving message, the discrete-event
chart does not wake up and the message is queued.

Temporal Triggering
In a discrete-event chart, you can use both event-based and absolute time-based temporal logic
operators. When using absolute time-based temporal logic operators, the SimEvents software uses
the specified time delay value exactly. For an example, see “Discrete-Event Chart Precise Timing” on
page 8-7.

For example, the activation of the temporal logic 'after(3,sec)' causes the chart to wake up after
three seconds of simulation clock time.

When using absolute-time temporal logic operators, observe these differences from the Stateflow
environment.

Operator Description
after You can use as event notation in both state

actions and transitions.
before When you use as event notation of a transition,

you cannot use additional condition notations on
this transition. You can apply a connective
junction to check additional conditions, as long as
the connective junction has one unconditional
transition.

In conditional notation, Discrete-Event Chart supports both after and before.

 Create Custom Queuing Systems Using Discrete-Event Stateflow Charts

8-5

See Also
Discrete Event Chart

Related Examples
• “Discrete-Event Chart Precise Timing” on page 8-7
• “Specify Properties for Stateflow Charts” (Stateflow)

8 Build Discrete-Event Systems Using Charts

8-6

Discrete-Event Chart Precise Timing

This example shows the precise timing that a Discrete-Event Chart block executes as it generates
parts in a facility. The behavior of the Discrete-Event Chart and the Stateflow® blocks are compared.
Both blocks require a Stateflow® license. Using a Discrete-Event Chart block, the example shows
that the temporal resolution of events can be arbitrarily precise and independent from the model
sample time.

In this example, an entity represents a part generated in pi seconds. The solver is set to Fixed-
step with step size 1, and for the Stateflow® Chart block, the Enable Super Step Semantics
check box is selected. For more information, see “Super Step Semantics” (Stateflow).

Model Description

In this model, the Part Generation block is created using a Discrete-Event Chart block and the Part
Generation Chart is created using a Stateflow® Chart block. Both blocks contain the same state
transition model, including two states, CreatePart and WaitForQA.

• The CreatePart state represents the production of a Part in pi seconds.

• The WaitForQA state represents the wait for the quality control department for Part's validation.

Enable the sample time annotation and simulate the model. Observe that the sample time for the
Discrete-Event Chart block reflects the event-based sampling.

 Discrete-Event Chart Precise Timing

8-7

Simulation Results

Observe that Part is generated by the Discrete-Event chart after precisely 3.14 seconds,
independent from the simulation step size.

Observe that Part is generated by the Stateflow® Chart after 4 seconds. This is due to the fixed step
size 1 , which causes the Stateflow® Chart block to wait until the next simulation step.

8 Build Discrete-Event Systems Using Charts

8-8

See Also
Discrete-Event Chart

More About
• “Create Custom Queuing Systems Using Discrete-Event Stateflow Charts” on page 8-2
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-10
• “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-19

 Discrete-Event Chart Precise Timing

8-9

Trigger a Discrete-Event Chart Block on Message Arrival

This example shows how to trigger a Discrete-Event Chart Block on the message arrival when
generating parts in a facility and performing quality assurance. In the example, behaviors of a
Discrete-Event Chart and Stateflow® Chart blocks are compared. Both blocks require a Stateflow®
license. The example shows that, a Discrete-Event Chart block executes immediately upon the arrival
of a message and does not wait for the next sample time hit.

In this example, a part is generated in the Part Generation block and it is sent to the Quality
Assurance block for the Part's quality control. After the evaluation, the Quality Assurance block
outputs the validated part.

The model is further modified to send the validated part back to the Part Generation block from
which it is shipped to the customer. For both models in this example, the solver is set to Fixed-step
with step size 1, and for all the Stateflow® Chart blocks, the Enable Super Step Semantics
option is selected. For more information, see “Super Step Semantics” (Stateflow).

Model Description

In the PartQualityEvaluationModel model, the Part Generation is modeled by a Discrete-Event
Chart block, and the Part Generation Chart is modeled by a Stateflow® Chart block. Both blocks
contain the same state transition logic including two states, CreatePart and WaitForQA.

• The CreatePart state represents the production of a Part in pi seconds.

• The WaitForQA state represents the wait for the quality control department for the Part's
validation.

8 Build Discrete-Event Systems Using Charts

8-10

Similarly, Quality Assurance is modeled by a Discrete-Event Chart block and Quality Assurance Chart
is modeled by using a Stateflow® Chart block. Both blocks contain the same state transition logic
including three states, WaitForPart, Evaluating, and Finished.

• The WaitForPart state represents the wait for the generated Part.

• When the Part arrives, the block transitions to the Evaluating state to represent the start of the
evaluation process.

• After 1 second, the evaluation is complete and the block transitions to Finished state.

• The Part departs the block and the block transitions back to the WaitForPart state.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-11

Simulation Results

Simulate the model. Observe the Scope block connected to the Quality Assurance block. The block
outputs the Part after 4.14 seconds, which is the sum of 3.14 seconds required for the Part's
generation and 1 s for its quality control.

Observe the Scope block that is connected to the Quality Assurance Chart block. The block outputs
the Part after 5 seconds, which is the sum of 4 seconds for the Part's generation and 1 second for its
quality control as a result of fixed step size 1. This difference is based on the precise timing property
of the Discrete-Event chart. For more information, see “Discrete-Event Chart Precise Timing” on page
8-7.

8 Build Discrete-Event Systems Using Charts

8-12

Further Modify the Model

Open PartQualityControlShip which is the modified the model that sends the processed Part back to
the Part Generation block for shipment. In the PartQualityControlShip model, the modified Part
Generation and Part Generation Chart blocks contain the same set of additional states and
transitions.

In the Part Generation and Part Generation Chart Blocks:

• The Review state represents the review of the quality control report for the ProcessedPart.
When the ProcessedPart returns, the block transitions to the Review state.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-13

• When the review is complete after sqrt(2) seconds, the block transitions to the Ship state.

• When the processed Part is shipped to the customer, the block transitions back to the
CreatePart state to generate a new part.

Simulation Results

Simulate the modified model. Observe that the processed Part departs the Part Generation block after
5.55 seconds, which is the sum of 4.14 required for part generation and quality control and 1.41 for
the review before shipment.

8 Build Discrete-Event Systems Using Charts

8-14

Observe that the processed Part departs the Part Generation Chart after 8 seconds, which is the sum
of 5 required for part generation and quality control, 2 for the review before shipment, and 1 for the
block's static scheduling.

 Trigger a Discrete-Event Chart Block on Message Arrival

8-15

Observe the Sequence Viewer block. Each time grid row bordered by two blue lines contains events
that occur at the same simulation time. The Sequence Viewer window shows events vertically,
ordered in time, and uses a combination of linear and nonlinear displays. For more information, see
“Use the Sequence Viewer to Visualize Messages, Events, and Entities” on page 5-25.

The ProcessedPart is sent from Quality Assurance block to Part Generation at 4.1 and the Part's
arrival triggers the Discrete-Event Chart block immediately. At time 5, the ProcessedPart is sent
from the Quality Assurance Chart to the Part Generation Chart. However, the Part Generation Chart
waits for the next sample time hit at 6 after the message arrival to execute.

In the order, Part Generation Chart executes first and Quality Assurance Chart executes second in
one sample time hit. That is the reason why Part Generation Chart block waits for the next sample
time hit to execute as the first block in the order.

8 Build Discrete-Event Systems Using Charts

8-16

See Also
Discrete-Event Chart

 Trigger a Discrete-Event Chart Block on Message Arrival

8-17

More About
• “Create Custom Queuing Systems Using Discrete-Event Stateflow Charts” on page 8-2
• “Discrete-Event Chart Precise Timing” on page 8-7
• “Dynamic Scheduling of Discrete-Event Chart Block” on page 8-19

8 Build Discrete-Event Systems Using Charts

8-18

Dynamic Scheduling of Discrete-Event Chart Block

This example shows how to use the dynamic scheduling that the Discrete-Event Chart block provides.
A Discrete Event Chart block can execute zero or multiple times in a time step. The example
compares the behaviors of the Discrete-Event Chart and Stateflow® Chart blocks. Both blocks
require a Stateflow® license.

In this example, a bicycle part is generated every second by the Part Generation block. Its quality
control is simultaneously performed when the part is in the assembly line. The quality control process
takes 1 s to restart. This process is modeled by the Quality Assurance block.

The solver is set to Fixed-step with step size 1, and for all the Stateflow® Chart blocks, the
Enable Super Step Semantics option is selected. For more information, see “Super Step
Semantics” (Stateflow).

Model Description

In the model, Part Generation is modeled by a Discrete-Event Chart block and Part Generation Chart
is modeled by a Stateflow® Chart block. Both blocks contain the same state transition logic including
three states, CreatePart, WaitForQA, and Ship.

 Dynamic Scheduling of Discrete-Event Chart Block

8-19

• After 1 s, a Part is generated and the Chart transitions from the CreatePart to WaitForQA.

• The quality control is simultaneous and the ProcessedPart returns back immediately. The block
transitions to the Ship state and after the ProcessedPart is shipped to the CreatePart state.

Similarly, the Quality Assurance is modeled by a Discrete-Event Chart while the Quality Assurance
Chart is modeled by a Stateflow® Chart block. Both blocks contain the same state transition logic
including three states, WaitForPart, Evaluating, and Finished.

• The WaitForPart state represents the wait for the generated Part. When the Part arrives, the
block transitions to the Evaluating state.

• Then the ProcessedPart is immediately sent back to Part Generation and the block transitions
to the Finished state.

• After 1 s, the block returns to the WaitForPart state.

Simulation Results

• Simulate the model. Observe the Scope block connected to the Part Generation block. The Parts
depart the facility every second.

8 Build Discrete-Event Systems Using Charts

8-20

Observe the Scope block connected to the Part Generation Chart block, which displays that the parts
are generated in every two seconds.

 Dynamic Scheduling of Discrete-Event Chart Block

8-21

The difference is due to the dynamic scheduling property of the Discrete-Event Chart block. For
instance, observe the Sequence Viewer block. Each time grid row, bordered by two blue lines,
contains events that occur at the same simulation time. For more information, see “Use the Sequence
Viewer to Visualize Messages, Events, and Entities” on page 5-25.

In the second and third simulation time step, the static scheduling of the Stateflow® Chart blocks
causes their execution with a fixed order, in which the Part Generation Chart labeled 1 is executed
first and the Quality Assurance Chart labeled 2 is executed second for each time step. The sequence
is 1,1,2 for the second time step and 1,2,2 for the third time step.

The dynamic scheduling property of the Discrete-Event Chart allows multiple executions of the Part
Generation and Quality Assurance blocks at each time step with the changing order. For example, in
the second time step, the order becomes 2,1,2,2,1,1.

8 Build Discrete-Event Systems Using Charts

8-22

See Also
Discrete-Event Chart

 Dynamic Scheduling of Discrete-Event Chart Block

8-23

More About
• “Create Custom Queuing Systems Using Discrete-Event Stateflow Charts” on page 8-2
• “Discrete-Event Chart Precise Timing” on page 8-7
• “Trigger a Discrete-Event Chart Block on Message Arrival” on page 8-10

8 Build Discrete-Event Systems Using Charts

8-24

Build Discrete-Event Systems Using
System Objects

• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Delay Entities with a Custom Entity Storage Block” on page 9-9
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-14
• “Custom Entity Storage Block with Multiple Timer Events” on page 9-19
• “Custom Entity Generator Block with Signal Input and Signal Output” on page 9-24
• “Build a Custom Block with Multiple Storages” on page 9-31
• “Create a Custom Resource Acquirer Block” on page 9-38
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48
• “Customize Discrete-Event System Behavior Using Events and Event Actions” on page 9-51
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55
• “Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory Blocks”

on page 9-58

9

Create Custom Blocks Using MATLAB Discrete-Event System
Block

In this section...
“Entity Types, Ports, and Storage in a Discrete-Event System Framework” on page 9-2
“Events” on page 9-5
“Implement a Discrete-Event System Object with MATLAB Discrete-Event System Block” on page 9-
6

Discrete-Event System objects let you implement custom event-driven entity-flow systems using the
MATLAB language. The MATLAB Discrete-Event System block enables you to use discrete-event
System objects to create a custom block in your SimEvents model. You can author such discrete-event
System objects via a set of MATLAB methods.

You can create a custom discrete-event System object from scratch that:

• Contains multiple entity storage elements, with each storage element containing multiple
SimEvents entities, and configure it to sort entities in a particular order.

• Has an entity or a storage element that can schedule and execute multiple types of events. These
events can model activities such as entity creation, consumption, search, transmission, and
temporal delay.

• Can accept entity/signal as input/output, produce entity and signal as outputs, and support both
built-in data types and structured/bus data types.

• Use MATLAB toolboxes for computation and scaling of complex systems.

The MATLAB Discrete-Event System block is similar to the MATLAB System block with these
differences:

• The resulting discrete-event System object is an instantiation of the
matlab.DiscreteEventSystem class rather than the matlab.System class.

• The matlab.DiscreteEventSystem has its own set of System object methods particular to
discrete-event systems.

• The matlab.DiscreteEventSystem also inherits a subset of the MATLAB System methods. For
a complete list of this subset, see “Create a Discrete-Event System Object” on page 9-44.

Entity Types, Ports, and Storage in a Discrete-Event System
Framework

An entity is a discrete object that the system processes. An entity has a type and the entity type
defines a class of entities that share a common set of data specifications and run-time methods.
Examples of data specifications include dimensions, data type, and complexity.

9 Build Discrete-Event Systems Using System Objects

9-2

Consider these guidelines when defining custom entity types using the getEntityTypesImpl
method:

• You can specify multiple entity types. Each type must have a unique name.
• An entity storage element, input port, and output port must specify the entity type they work with.
• Specify or resolve common data specifications for an entity type. For example, an input port and

an output port with the same entity type must have the same data type.
• When forwarding an entity, the source and destination data specifications must be same in these

instances:

• From an input port to a storage element
• Between storage elements
• From a storage element to an output port

• Each entity type can share a common set of event action methods. When naming these methods,
to distinguish the entity type use this convention:

entitytypeAction

For example, if there are two entity types, car and truck, use method names such as:

carEntry
truckEntry

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-3

During simulation, an entity always occupies a unit of storage space. Such storage spaces are
provided by entity storage elements. A discrete-event System object can contain multiple entity
storage elements. Use the getEntityStorageImpl method to specify storage elements. A storage
space is a container with these properties:

• Entity type — Entity type this storage is handling.
• Capacity — Maximum number of entities that the storage can contain.
• Storage type — Criteria to sort storage entities (FIFO, LIFO, and priority).
• Key name — An attribute name used as key name for sorting. This property is applicable only

when the storage type is priority.
• Sorting direction — Ascending or descending priority queues. This property is applicable only

when the storage type is priority.

You can access any entity at an arbitrary location of a storage and specify events.

9 Build Discrete-Event Systems Using System Objects

9-4

Ports enable a discrete-event System object to exchange entities and data with other blocks or model
components. You can specify a variable number of input and output ports using the
getNumInputsImpl and getNumOutputsImpl methods. You can also specify which ports are entity
ports and the entity types for these ports. Use the getEntityPortsImpl method to specify these
port properties.

Events
You can schedule events for a discrete-event System object to execute. Events are associated with
user-defined actions. An event action defines a custom behavior by changing state or entity values,
and executing the next set of events.

You can use methods and functions to:

• Schedule events
• Define event actions in response to events
• Initialize events
• Cancel events

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-5

A MATLAB discrete-event System object can have these types of events:

• Storage events — You can schedule these events on a storage element. The actor is a storage
element.

• You can generate a new entity inside a storage element.
• You can iterate each entity of a storage element.

• Entity events — You can schedule these events on an entity. Actor is an entity.

• You can delay an entity.
• You can forward an entity from its current storage to another storage or output port.
• You can destroy the existing entity of a storage element.

For more information on using events and event actions, see “Customize Discrete-Event System
Behavior Using Events and Event Actions” on page 9-51.

Implement a Discrete-Event System Object with MATLAB Discrete-
Event System Block
To Implement a custom block by assigning a discrete-event System object, follow these steps.

1 Open a new model and add the MATLAB Discrete-Event System block from the SimEvents library.

2 In the block dialog box, from the New list, select Basic to create a System object from a
template.

9 Build Discrete-Event Systems Using System Objects

9-6

Modify the template as needed and save the System object.

You can also modify the template and define Discrete-Event System objects from the MATLAB
Editor using code insertion options. By selecting Insert Property or Insert Method, the
MATLAB Editor adds predefined properties, methods, states, inputs, or outputs to your System
object. Use these tools to create and modify System objects faster, and to increase accuracy by
reducing typing errors.

3 If the System object exists, in the block dialog box, enter its name for the Discrete-event
System object name parameter. Click the list arrow to see the available discrete-event System
objects in the current folder.

The MATLAB Discrete-Event System block icon and port labels update to the icons and labels of
the corresponding System object. Suppose that you select a System object named myServer in
your current folder and generate a custom entity server block that serves entities and outputs
each entity through the output port. Then, the block updates as shown in the model.

Many different MATLAB System object functions allow you to capture the properties and implement
custom behaviors. The provided template is simplified, but you can add complexity by editing event
actions, introducing actions, and modifying parameters. The object-oriented programming features of
MATLAB System object enable you to scale your model, and interface it with the graphical
programming features of SimEvents.

These topics walk you through a complete workflow for creating custom blocks with distinct
functionalities.

1 “Delay Entities with a Custom Entity Storage Block” on page 9-9
2 “Create a Custom Entity Storage Block with Iteration Event” on page 9-14

 Create Custom Blocks Using MATLAB Discrete-Event System Block

9-7

3 “Custom Entity Storage Block with Multiple Timer Events” on page 9-19
4 “Custom Entity Generator Block with Signal Input and Signal Output” on page 9-24
5 “Build a Custom Block with Multiple Storages” on page 9-31
6 “Create a Custom Resource Acquirer Block” on page 9-38

For other examples of MATLAB Discrete-Event System block and discrete-event System objects, see
SimEvents Examples in the Help browser.

To use provided custom blocks, in the SimEvents library, double-click the Design Patterns block. The
MATLAB Discrete-Event System category contains these design patterns:

Example Application
Custom Generator Implement a more complicated entity generator.
Custom Server Use a custom server.
Selection Queue Select a specific entity to output from a queue.

For more information, see “SimEvents Common Design Patterns”.

See Also
matlab.DiscreteEventSystem | matlab.System

More About
• “Delay Entities with a Custom Entity Storage Block” on page 9-9
• “Integrate System Objects Using MATLAB System Block”
• “Create a Discrete-Event System Object” on page 9-44
• “Customize Discrete-Event System Behavior Using Events and Event Actions” on page 9-51

9 Build Discrete-Event Systems Using System Objects

9-8

Delay Entities with a Custom Entity Storage Block
This example shows how to use discrete-event System object methods to create a custom entity
storage block that has one input port, one output port, and one storage element. The discrete-event
System object is the instantiation of the matlab.DiscreteEventSystem class, which allows you to
use the implementation and service methods provided by this class. Then, you use the MATLAB
Discrete-Event System block to integrate the System object into a SimEvents model.

The custom MATLAB Discrete-Event System block accepts an entity from its input port and forwards
it to its output port with a specified delay. The figure visualizes the block using the discrete-event
system framework.

To open the model and to observe the behavior of the custom block, see
CustomEntityStorageBlockExample.

Create the Discrete-Event System Object
1 Create a new script and inherit the matlab.DiscreteEventSystem class.

classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem
2 Add a custom description to the block.

% A custom entity storage block with one input, one output, and one storage.

3 Declare two nontunable parameters Capacity and Delay to represent the storage capacity and
the entity departure delay from the storage.

% Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 % Delay
 Delay = 4;
 end

The parameters capture the properties of the block.

• Tunable parameters can be tuned during run time.
• Non-tunable parameters cannot be tuned during run time.

4 Specify these methods and set access to protected.
 methods (Access = protected)

 % Specify the number of input ports.
 function num = getNumInputsImpl(~)
 num = 1;
 end

 Delay Entities with a Custom Entity Storage Block

9-9

 % Specify the number of output ports.
 function num = getNumOutputsImpl(~)
 num = 1;
 end
 % Specify a new entity type Car.
 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end
 % Specify Car as the entity type that is used in
 % input and output ports.
 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end
 % Specify the storage type, capacity, and connection to
 % the input and output ports.
 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 % First element of I indicates the entity storage index 1 that is
 % connected to input 1.
 I = 1;
 % First element of O indicates the entity storage index 1 that is
 % connected to output 1.
 O = 1;
 end

 end

Only one storage sorts cars in a first-in-first-out (FIFO) manner. The Capacity parameter of the
object defines the server capacity.

The method getEntityStorageImpl() also specifies the connections between the ports and
the storage, I and O.

• The return value I is a vector of elements i = 1, ...n where its length n is equal to the number
of input ports.

In this example, n is 1 because only one input port is declared.
• The ith element indicates the entity storage index that the ith input port connects to.

In this example, input port 1 is connected to storage 1.
• If an input port is a signal port, the corresponding element is 0.

Similarly the return value O is used to define the connections between the storage and the output
port.

5 Specify an eventForward event to forward an entity of type Car to the output when it enters
the storage.
 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 event = obj.eventForward('output', 1, obj.Delay);
 end

A Car entry to the storage invokes an event action and the event obj.eventForward forwards
Car to the output with index 1 with a delay specified by obj.Delay.

You can use the input arguments of this method to create custom behavior. The argument obj is
the discrete-event System object inherited by the method. The argument storage is the index of
the storage element that the entity enters. The argument entity is the entity that enters the
storage and it has two fields, entity.sys and entity.data. The argument source is the
source location of the entity that enters the storage.

Note You cannot manipulate entity data within an exit action.

9 Build Discrete-Event Systems Using System Objects

9-10

6 Name your discrete-event System object CustomEntityStorageBlock and save it as
CustomEntityStorageBlock.m.

The custom block represents a simplified gas station that can serve one car at a time. A car
arrives at the gas station and is serviced for 4 minutes before departing the station.

See the Code to Generate Custom Entity Storage Block
classdef CustomEntityStorageBlock < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 % Delay
 Delay = 4;
 end

 methods (Access = protected)

 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 end

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 event = obj.eventForward('output', 1, obj.Delay);
 end

 end

end

Implementing the Custom Entity Storage Block
1 Create a model using an Entity Generator block, MATLAB Discrete-Event System block, and an

Entity Terminator block.

 Delay Entities with a Custom Entity Storage Block

9-11

2 Open the MATLAB Discrete-Event System block, and set the Discrete-event System object
name to CustomEntityStorageBlock.

3 Double-click the MATLAB Discrete-Event System block to observe its capacity and delay.

4 Output the Number of entities arrived, a statistic from the Entity Terminator block and
connect it to a scope

5 Increase the simulation time to 20 and run the simulation. Observe the entities arriving at the
Entity Terminator block with a delay of 4.

9 Build Discrete-Event Systems Using System Objects

9-12

See Also
matlab.DiscreteEventSystem | entry | matlab.System | getEntityStorageImpl |
getEntityPortsImpl | getEntityTypesImpl

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55

 Delay Entities with a Custom Entity Storage Block

9-13

Create a Custom Entity Storage Block with Iteration Event
A discrete-event System object can contain multiple event types for manipulating entities, acting on
the storages, and resource management. When an event is due for execution, a discrete-event system
can respond to that event by invoking event actions. The goal of this example is to show how to work
with events and event actions when creating a custom block. To see the list of provided event and
event actions, see “Customize Discrete-Event System Behavior Using Events and Event Actions” on
page 9-51.

To open the model and to observe the behavior of the custom block, see
CustomEntityStorageBlockWithIterationEventExample.

Create the Discrete-Event System Object
In this example, a custom block allows entities to enter its storage element through its input port. The
storage element sorts the entities based on their Diameter attribute in ascending order. Every entity
entry to the block's storage invokes an iteration event to display the diameter and the position of each
entity in the storage.

The storage element allows you to define its capacity to store and sort entities during which any
entity can be accessed and manipulated. In this example, the storage with capacity 5 is used to store
and sort car wheels based on their Diameter attribute in an ascending order. When a new wheel
enters the storage, an iteration event eventIterate is invoked, which triggers an iteration event
action iterate to display wheel positions in the storage and their diameter.

See the Code to Generate the Custom Storage Block with Iteration Event
classdef CustomEntityStorageBlockIteration < matlab.DiscreteEventSystem

 % A custom entity storage block with one input port and one storage element.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 5;
 end
 % Create the storage element with one input and one storage.
 methods (Access=protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 0;
 end

9 Build Discrete-Event Systems Using System Objects

9-14

 function entityTypes = getEntityTypesImpl(obj)
 entityType1 = obj.entityType('Wheel');
 entityTypes = entityType1;
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Wheel'};
 outputTypes={};

 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queuePriority('Wheel',obj.Capacity, 'Diameter','ascending');
 I = 1;
 O = [];

 end

 end
 % Entity entry event action
 methods

 function [entity, event] = WheelEntry(obj,storage,entity, source)
 % Entity entry invokes an iterate event.
 event = obj.eventIterate(1, '');
 end

 % The itarate event action
 function [entity,event,next] = WheelIterate(obj,storage,entity,tag,cur)
 % Display wheel id, position in the storage, and diameter.
 coder.extrinsic('fprintf');
 fprintf('Wheel id %d, Current position %d, Diameter %d\n', ...
 entity.sys.id, cur.position, entity.data.Diameter);
 if cur.size == cur.position
 fprintf('End of Iteration \n')
 end
 next = true;
 event=[];
 end

 end

end

Define Custom Block Behavior
1 Define a storage with capacity obj.Capacity, which sorts wheels based in their priority value.

The priority values are acquired from the Diameter attributes of the entities and are sorted in
ascending order.
 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queuePriority('Wheel',obj.Capacity, 'Diameter','ascending');
 I = 1;
 O = [];
 end

2 A wheel's entry into the storage invokes an iterate event.
 function [entity, event] = WheelEntry(obj,storage,entity, source)
 % Entity entry invokes an iterate event.
 event = obj.eventIterate(1, '');
 end

Input argument 1 is the storage index for the iterate event, and '' is the tag name.
3 The iterate event invokes an iterate event action.

 % The itarate event action
 function [entity,event,next] = WheelIterate(obj,storage,entity,tag,cur)
 % Display wheel id, position in the storage, and diameter.
 coder.extrinsic('fprintf');
 fprintf('Wheel id %d, Current position %d, Diameter %d\n', ...
 entity.sys.id, cur.position, entity.data.Diameter);
 if cur.size == cur.position
 fprintf('End of Iteration \n')
 end

 Create a Custom Entity Storage Block with Iteration Event

9-15

 next = true;
 event=[];
 end

In the code, coder.extrinsic('fprintf') declares the function fprintf() as extrinsic
function for code generation. For each iteration, the code displays the new wheel ID, current
position, and diameter, which is used as sorting attribute.

Implement Custom Block
1 Save the .m file as CustomEntityStorageBlockIteration. Link the System object to a

SimEvents model by using a MATLAB Discrete-Event System block. For more information about
linking, see “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2.

2 Create a SimEvents model including the MATLAB Discrete-Event System block, and an Entity
Generator block.

3 In the Entity Generator block:

a In the Entity type tab, set the Attribute Name as Diameter.

The attribute Diameter is used to sort entities in the MATLAB Discrete-Event System block.
b In the Event actions tab, in the Generate action field, add this code to randomize the size

of the incoming entities.

entity.Diameter = randi([1 10]);
c In the Statistics tab, output the Number of entities departed, d statistic and connect to a

scope.
4 Connect the blocks as shown and simulate the model.

a Observe that the Entity Generator block generates 5 entities since the capacity of the
storage block is 5.

9 Build Discrete-Event Systems Using System Objects

9-16

b The Diagnostic Viewer displays the iteration event for each wheel entry to the storage. Each
iteration displays ID, position, and diameter of the wheels. Observe how each wheel entry
changes the order of the stored wheels. In the last iteration, 5 entities in the storage are
sorted in ascending order.

 Create a Custom Entity Storage Block with Iteration Event

9-17

See Also
matlab.DiscreteEventSystem | entry | matlab.System | getEntityStorageImpl |
getEntityPortsImpl | getEntityTypesImpl | eventIterate | iterate

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55

9 Build Discrete-Event Systems Using System Objects

9-18

Custom Entity Storage Block with Multiple Timer Events
A discrete-event system allows the implementation of distinct event types for manipulating entities
and storages. Sometimes, the desired behavior involves more than one event acting on the same
storage or entity. This example shows how to handle multiple events acting on the same target in a
discrete-event system framework. In this example, a custom entity storage block is generated to
implement the tag, which is one of the identifiers, when multiple timer events are acting on the same
entity. To see the list of event identifiers, see “Customize Discrete-Event System Behavior Using
Events and Event Actions” on page 9-51.

To open the model and observe the behavior of the custom block, see
CustomEntityStorageBlockWithTwoTimerEventsExample.

Create the Discrete-Event System Object with Multiple Timer Events
Suppose that the discrete-event System object is used to represent a facility that processes metal
parts using an oven. The processing time varies based on the detected metal. For safety, the parts
have a maximum allowed processing time.

• If the oven processing time is less than the allowed maximum time, the parts are processed and
depart the oven and the facility.

• If there is an error in detected metal, the service time exceeds the maximum allowed processing
time, the process stops and the parts are taken out of the oven to be rerouted for further
processing.

To represent this behavior, this example uses a custom entity storage block with one input, two
outputs, and a storage element. An entity of type Part with TimeOut attribute enters the storage of
the custom block to be processed. TimeOut determines the maximum allowed processing time of the
parts. When a part enters the storage, two timer events are activated. One timer tracks the
processing time of the part in the oven. When this timer expires, the entity is forwarded to output 1.
Another timer acts as a fail-safe and tracks if the maximum allowed processing time is exceeded or
not. When this timer expires, the process is terminated and the entity is forwarded to the output 2.

This example that generates the custom block and uniquely identifies these two timer events
targeting on the same entity using custom tags.

See the Code to Generate the Custom Storage Block with Timer Events
classdef CustomEntityStorageBlockTimer < matlab.DiscreteEventSystem

 Custom Entity Storage Block with Multiple Timer Events

9-19

 % A custom entity storage block with one input port, two output ports, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 end

 methods (Access=protected)

 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 2;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Part');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Part'};
 outputTypes = {'Part' 'Part'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Part', obj.Capacity);
 I = 1;
 O = [1 1];
 end

 end

 methods

 function [entity,event] = PartEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 ProcessingTime=randi([1 15]);
 event1 = obj.eventTimer('TimeOut', entity.data.TimeOut);
 event2 = obj.eventTimer('ProcessComplete', ProcessingTime);
 event = [event1 event2];
 end

 function [entity, event] = timer(obj,storage,entity,tag)
 % Specify event actions for when scheduled timer completes.
 event = obj.initEventArray;
 switch tag
 case 'ProcessComplete'
 event = obj.eventForward('output', 1, 0);
 case 'TimeOut'
 event = obj.eventForward('output', 2, 0);
 end

 end

 end

end

Custom Block Behavior
1 Generate a custom block with one input, two outputs, and a storage element. For more

information about creating a basic storage element, see “Implement a Discrete-Event System
Object with MATLAB Discrete-Event System Block” on page 9-6.
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 2;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Part');

9 Build Discrete-Event Systems Using System Objects

9-20

 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Part'};
 outputTypes = {'Part' 'Part'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('entity1', obj.Capacity);
 I = 1;
 O = [1 1];
 end

2 Invoke two timers with tags 'TimeOut' and 'ProcessComplete' when an entity enters the
storage.
 function [entity,event] = PartEntry(obj,storage,entity,source)
 % Specify event actions when entity enters storage.
 ProcessingTime = randi([1 15]);
 % The TimeOut attribute specifies the expiration time of the timer with tag TimeOut
 event1 = obj.eventTimer('TimeOut', entity.data.TimeOut);
 % The expiration time of the timer ProcessComplete is a random integer between
 % 1 and 15.
 event2 = obj.eventTimer('ProcessComplete', ProcessingTime);
 event = [event1 event2];
 end

3 The timer that expires the first determines the entity forward behavior.
 function [entity, event] = timer(obj,storage,entity,tag)
 % Specify event actions for when scheduled timer completes.
 event = obj.initEventArray;
 switch tag
 case 'ProcessComplete'
 % If ProcessComplete expires first, entities are forwarded to output 1.
 event = obj.eventForward('output', 1, 0);
 case 'TimeOut'
 % If TimeOut expires first, entities are forwarded to output 2.
 event = obj.eventForward('output', 2, 0);
 end
 end

Implement Custom Block
1 Save the .m file as CustomEntityStorageBlockTimer. Link the System object to a SimEvents

model by using a MATLAB Discrete-Event System block. For more information about linking, see
“Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2.

2 Create a SimEvents model including the MATLAB Discrete-Event System block, an Entity
Generator block, two Entity Terminator blocks. Connect the blocks as shown in the model.

3 In the Entity Generator block:

 Custom Entity Storage Block with Multiple Timer Events

9-21

a In the Entity type tab, set the Attribute Name as TimeOut.
b In the Event actions tab, in the Generate action field:

entity.TimeOut = 10;
4 In the Entity Terminator and Entity Terminator1 blocks, output the Number of entities arrived,

a statistic and connect them to scopes.
5 Increase simulation time to 100 and simulate the model. Observe that entities are forwarded to

the corresponding output based on the corresponding timer expiration.

9 Build Discrete-Event Systems Using System Objects

9-22

See Also
eventTimer | matlab.DiscreteEventSystem | entry | matlab.System |
getEntityStorageImpl | getEntityPortsImpl | getEntityTypesImpl | timer

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55

 Custom Entity Storage Block with Multiple Timer Events

9-23

Custom Entity Generator Block with Signal Input and Signal
Output

This example shows how to create a custom source block that generates entities and to manage
discrete states when implementing the discrete-event System object methods.

Suppose that you manage a facility that produces raw materials with a fixed deterministic rate. The
materials contain a 12-digit bar code for stock management and priority values for order
prioritization. To represent this behavior, this example shows how to generate a custom entity storage
block is generated with one signal input port, one entity output port, one signal output port, and one
storage element. The block generates entities with distinct priority values. The entities carry data and
depart the block from its output port. The entity priority values are acquired from values of the
incoming signal.

To open the model and to observe the behavior of the custom block, see
CustomEntityGeneratorBlockExample.

Create the Discrete-Event System Object

The block is defined as a custom entity generator block that generates entities with specified
intergeneration periods. The generated entities carry data, and their priority values are determined
by the values of the input signal.

See the Code to Create the Custom Entity Generator Block
classdef CustomEntityStorageBlockGeneration < matlab.DiscreteEventSystem...

 % A custom entity generator block.

 % Nontunable properties
 properties (Nontunable)
 % Generation period
 period = 1;
 end

 properties(DiscreteState)
 % Entity priority
 priority;
 % Entity value
 value;
 end

 % Discrete-event algorithms
 methods

9 Build Discrete-Event Systems Using System Objects

9-24

 function [events, out1] = setupEvents(obj)
 % Set up entity generation events at simulation start.
 events = obj.eventGenerate(1,'mygen',obj.period,obj.priority);
 % Set up the initial value of the output signal.
 out1 = 10;
 end

 function [entity,events,out1] = generate(obj,storage,entity,tag,in1)
 % Specify event actions when entity is generated in storage.
 entity.data = obj.value;
 % The priority value is assigned from the input signal.
 obj.priority = in1;
 % Output signal is the assigned priority value.
 out1 = obj.priority;
 events = [obj.eventForward('output',1,0) ...
 obj.eventGenerate(1,'mygen',obj.period,obj.priority)];
 end
 end

 methods(Access = protected)

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Material');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 % Specify entity input and output ports. Return entity types at
 % a port as strings in a cell array. Use empty string to
 % indicate a data port.
 inputTypes = {''};
 outputTypes = {'Material',''};
 end

 function resetImpl(obj)
 % Initialize / reset discrete-state properties.
 obj.priority = 10;
 obj.value = 1:12;
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Material', 1);
 I = 0;
 O = [1 0];
 end

 function num = getNumInputsImpl(obj)
 % Define total number of inputs for system with optional
 % inputs.
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 % Define total number of outputs.
 num = 2;
 end
 function [out1 out2] = getOutputSizeImpl(obj)
 % Return size for each output port.
 out1 = [1 12];
 out2 = 1;
 end

 function [out1 out2] = getOutputDataTypeImpl(obj)
 % Return data type for each output port.
 out1 = "double";
 out2 = "double";
 end

 function [out1 out2] = isOutputComplexImpl(obj)
 % Return true for each output port with complex data.
 out1 = false;
 out2 = false;
 end

 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name)
 % Return size, data type, and complexity of discrete-state
 % specified in name.
 switch name
 case 'priority'
 sz = [1 1];
 case 'value'
 sz = [1 12];

 Custom Entity Generator Block with Signal Input and Signal Output

9-25

 end
 dt = "double";
 cp = false;
 end
 end
end

Custom Block Behavior
1 Define the time between material generations.

 % Nontunable properties
 properties (Nontunable)
 % Generation period
 period = 1;
 end

2 Initialize the discrete state variables.
 function resetImpl(obj)
 % Initialize / reset discrete-state properties.
 obj.priority = 10;
 obj.value = 1:12;
 end

The variable priority represents material priority and the value represents bar code data
carried by the materials.

3 Initialize the output for a source block.
 function num = getNumOutputsImpl(~)
 % Define total number of outputs.
 num = 2;
 end
 function [out1 out2] = getOutputSizeImpl(obj)
 % Return size for each output port.
 out1 = [1 12];
 out2 = 1;
 end

 function [out1 out2] = getOutputDataTypeImpl(obj)
 % Return data type for each output port.
 out1 = "double";
 out2 = "double";
 end

 function [out1 out2] = isOutputComplexImpl(obj)
 % Return true for each output port with complex data.
 out1 = false;
 out2 = false;
 end

• First function declares the output size.
• Second function declares that output port data types are double.
• Third function declares false for output ports because they do not support complex data.

4 Declare the size, data, and complexity of the discrete states.
 function [sz,dt,cp] = getDiscreteStateSpecificationImpl(obj,name)
 % Return size, data type, and complexity of discrete-state.
 switch name
 case 'priority'
 sz = [1 1];
 case 'value'
 sz = [1 12];
 end
 dt = "double";
 cp = false;
 end

• The discrete state priority is scalar. The data type is double and takes real values.
• The discrete state value is a 1-by-12 vector. The data type is double and takes real values.

9 Build Discrete-Event Systems Using System Objects

9-26

5 Generate the materials with intergeneration period, priority, and data defined by:

• The parameter obj.period, declared as a public parameter that can be changed from the
block dialog box.

• The parameter obj.priority values, defined by the signal from the input port.
• The parameter obj.value, a 1-by-12 vector which represents the data carried by entities.

 function events = setupEvents(obj)
 % Set up entity generation event for storage 1 at simulation start.
 events = obj.eventGenerate(1,'mygen',obj.period,obj.priority);
 % Set up the initial value of the output signal.
 out1 = 10;
 end

 function [entity,events,out1] = generate(obj,storage,entity,tag,in1)
 % Specify event actions when entity is generated in storage.
 entity.data = obj.value;
 % The value from the signal is assigned to the entity priority.
 obj.priority = in1;
 % Output signal is the assigned priority value.
 out1 = obj.priority;
 events = [obj.eventForward('output',1,0) ...
 obj.eventGenerate(1,'mygen',obj.period,obj.priority)];
 end

Implement Custom Block
1 Save the .m file as CustomEntityStorageBlockGeneration. Link the System object to a

SimEvents model by using a MATLAB Discrete-Event System block. For more information about
linking, see “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2.

2 Create a SimEvents model that includes the MATLAB Discrete-Event System block, a Ramp
block, an Entity Terminator block, and two Scope blocks. Connect the blocks as shown in the
model.

3 In the Ramp block, set Slope to 5 and Initial output to 10.
4 In the Entity Terminator block, you can display the priority values of the entities arriving at the

block, in the Entry action field enter this code.
coder.extrinsic('fprintf');
fprintf('Priority: %d\n', double(entitySys.priority))

5 Right-click the entity path from the custom Entity Generator to the Entity Terminator and select
the Log Selected Signals.

6 Simulate the model.

a Observe the output of the Ramp block. For instance, the output value becomes 15, 20, 25,
and 30 for the simulation time 1, 2, 3, and 4, respectively.

 Custom Entity Generator Block with Signal Input and Signal Output

9-27

b The Simulation Data Inspector shows that entities are forwarded to the Entity Terminator
block with data of size 1-by-12.

9 Build Discrete-Event Systems Using System Objects

9-28

c You can also observe the priority values from the scope labeled Entity Priority for generation
times 1, 2,3, 4, 5, 6, 7, 8, 9, and 10.

 Custom Entity Generator Block with Signal Input and Signal Output

9-29

See Also
matlab.DiscreteEventSystem | entry | matlab.System | getEntityStorageImpl |
getEntityPortsImpl | generate

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55

9 Build Discrete-Event Systems Using System Objects

9-30

Build a Custom Block with Multiple Storages
This example shows how to create a custom block with multiple storages and manage storage
behavior using discrete-event System object methods.

Suppose that you manage a facility that produces items for customer orders. To prepare for repetitive
orders, the facility produces a supply of items before the orders arrive. When a new order arrives, the
stocks are checked for availability.

• If the item is found in the storage, it departs the facility to fulfill the order.
• If the item is not found in the storage, a new item is produced and the generated item departs the

facility to fulfill the order.

To generate this custom behavior, you manipulate multiple storages through a discrete-event System
object, created using the matlab.DiscreteEventSystem methods. To observe the behavior of the
custom block, see CustomEntityStorageBlockWithTwoStoragesExample.

Create the Discrete-Event System Object
Generate a custom entity storage block with two inputs, one output, and two storage elements.

The desired behavior of the custom block is to select and output entities based on a reference entity.

1 Input port 1 accepts entities with type Item to storage 1.
2 Input port 2 accepts reference entities with type Order to storage 2.
3 When a reference Order arrives at storage 2, its attribute data is recorded as the reference

value, and the entity is destroyed.

 Build a Custom Block with Multiple Storages

9-31

4 The Order arrival invokes an iteration event at storage 1 to search for an Item carrying data
that is equal to the reference value.

5 If a match is found, the matching item is forwarded to output port 1 and the iteration ends.
6 If the match is not found, a new Item is generated at storage 1 with a matching attribute value

and forwarded to output port 1.

See the Code to Generate the Custom Storage Block with Multiple Storages
classdef CustomBlockTwoEntityStorages < matlab.DiscreteEventSystem

 % Select from stored entities based on a lookup key.

 properties (Nontunable)
 % Capacity
 capacity = 100;
 end

 properties (DiscreteState)
 InputKey;
 end

 methods (Access=protected)

 function num = getNumInputsImpl(~)
 num = 2;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function [entityTypes] = getEntityTypesImpl(obj)
 entityTypes = [obj.entityType('Item'), ...
 obj.entityType('Order')];
 end

 function [inputTypes, outputTypes] = getEntityPortsImpl(~)
 inputTypes = {'Item' 'Order'};
 outputTypes = {'Item'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = [obj.queueFIFO('Item', obj.capacity)...
 obj.queueFIFO('Order', obj.capacity)];
 I = [1 2];
 O = 1;
 end

 function [sz, dt, cp] = getDiscreteStateSpecificationImpl(obj, name)
 sz = 1;
 dt = 'double';
 cp = false;
 end

 function resetImpl(obj)
 obj.InputKey = 0;
 end
 end

 methods

 function [Order,events] = OrderEntry(obj, storage, Order, source)
 % A key entity has arrived; record the Inputkey value.
 obj.InputKey = Order.data.Key;
 % Schedule an iteration of the entities in storage 1.
 % Destroy input key entity.
 events = [obj.eventIterate(1, '') ...
 obj.eventDestroy()];
 coder.extrinsic('fprintf');
 fprintf('Order Key Value: %f\n', Order.data.Key);
 end

 function [Item,events,continueIter] = ItemIterate(obj,...
 storage, Item, tag, cur)
 % Find entities with matching key.
 events = obj.initEventArray;
 continueIter = true;

9 Build Discrete-Event Systems Using System Objects

9-32

 if (Item.data.Attribute1 == obj.InputKey)
 events = obj.eventForward('output', 1, 0.0);
 % If a match is found, the iteration ends and the state is reset.
 continueIter = false;

 elseif cur.size == cur.position
 % If a match is not found, a new matching entity is generated.
 events = obj.eventGenerate(1,'mygen',0.0,100);
 end
 end

 function [Item,events] = ItemGenerate(obj,storage,Item,tag)
 % Specify event actions when entity generated in the storage.
 Item.data.Attribute1 = obj.InputKey;
 events = obj.eventForward('output',1,0.0);
 end
 end
end

Custom Block Behavior
1 Discrete state variable InputKey represents the recorded reference value from Order, which is

used to select corresponding Item.
 properties (DiscreteState)
 InputKey;
 end

2 The block has two storages with FIFO behavior. Storage 1 supports entities with type Item, and
storage 2 supports entities with type Order. The block has two input ports and one output port.
Input port 1 and output port 1 are connected to storage 1. Input port 2 is connected to storage 2.
For more information about declaring ports and storages, see “Implement a Discrete-Event
System Object with MATLAB Discrete-Event System Block” on page 9-6.
 function num = getNumInputsImpl(~)
 num = 2;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function [entityTypes] = getEntityTypesImpl(obj)
 entityTypes = [obj.entityType('Item'), ...
 obj.entityType('Order')];
 end

 function [inputTypes, outputTypes] = getEntityPortsImpl(~)
 inputTypes = {'Item' 'Order'};
 outputTypes = {'Order'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = [obj.queueFIFO('Item', obj.capacity)...
 obj.queueFIFO('Order', obj.capacity)];
 I = [1 2];
 O = 1;
 end

3 Specify the discrete state and reset the state InputKey. For more information about states in
discrete-event systems, see “Custom Entity Generator Block with Signal Input and Signal
Output” on page 9-24.
 function [sz, dt, cp] = getDiscreteStateSpecificationImpl(obj, name)
 sz = 1;
 dt = 'double';
 cp = false;
 end

 function resetImpl(obj)
 obj.InputKey = 0;
 end

 Build a Custom Block with Multiple Storages

9-33

4 When Order arrives at storage 2, its data Key is recorded in the discrete state variable
Obj.InputKey. This entry also invokes an iteration event at storage 1 and another event to
destroy Order.
 function [Order, events] = OrderEntry(obj, storage, Order, source)
 % A key entity has arrived; record the Inputkey value.
 obj.InputKey = Order.data.Key;
 % Schedule an iteration of the entities in storage 1.
 % Destroy input key entity.
 events = [obj.eventIterate(1, '') ...
 obj.eventDestroy()];
 coder.extrinsic('fprintf');
 fprintf('Order Key Value: %f\n', Order.data.Key);
 end

5 The purpose of the iteration is to find items with data that matches InputKey.
 function [Item,events,continueIter] = ItemIterate(obj,...
 storage, Item, tag, cur)
 % Find entities with matching key.
 events = obj.initEventArray;
 continueIter = true;

 if (Item.data.Attribute1 == obj.InputKey)
 events = obj.eventForward('output', 1, 0.0);
 % If a match is found, the iteration ends and the state is reset.
 continueIter = false;

 elseif cur.size == cur.position
 % If a match is not found, this invokes an entity generation event.
 events = obj.eventGenerate(1,'mygen',0.0,100);
 end
 end

6 Generate an entity with type entity1 and a matching Key value. Then, forward the generated
entity to output port 1.
 function [Item,events] = ItemGenerate(obj,storage,Item,tag)
 % Specify event actions when entity generated in the storage.
 Item.data.Attribute1 = obj.InputKey;
 events = obj.eventForward('output',1,0.0);
 end

Implement the Custom Block
1 Save the .m file as CustomBlockTwoEntityStorages. Link the System object to a SimEvents

model using a MATLAB Discrete-Event System block. For more information about linking, see
“Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2.

2 Create a SimEvents model including the MATLAB Discrete-Event System block, two Entity
Generator blocks, and an Entity Terminator block. Connect the blocks as shown in the model.

9 Build Discrete-Event Systems Using System Objects

9-34

3 In the Entity Generator block:

a In the Entity generation tab, set the Generate entity at simulation start to off.
b In the Entity type tab, set the Entity type name as Item.
c In the Event Actions tab, in the Generate action field enter:

entity.Attribute1 = randi([1 3]);

By default, the entities are generated with intergeneration time 1 and their Attribute1
value is a random integer between 1 and 3.

d In the Statistics tab, output the Number of entities departed, d statistic and connect it to
a scope.

4 In the Entity Generator1 block:

a In the Entity generation tab, set Generate entity at simulation start to off, and set
Period to 5.

b In the Entity type tab, set the Entity type name as Order and Attribute Name as Key.
c In the Event Actions tab, in the Generate action field enter:

entity.Key = randi([1 4]);

Entities with type Order are generated with intergeneration time 5, and the Key attribute takes
integer values between 1 and 4.

There is no possible match between Key and Attribute1 when the Key value is 4 because
Attribute1 can take the value 1, 2, or 3.

5 In the Entity Terminator block, output the Number of entities arrived, a statistic and connect
it to a scope.

6 Right-click the entity path from the MATLAB Discrete-Event System block to the Entity
Terminator block and select Log Selected Signals.

7 Increase simulation time to 50 and simulate the model. Observe that:

a 50 entities with type Entity1 enter storage 1 in the block.

 Build a Custom Block with Multiple Storages

9-35

b In the Diagnostic Viewer, observe the incoming Key reference values carried by 10 entities
that enter storage 2 and are destroyed afterward.

c The Simulation Data Inspector shows the departing items and their Attribute1 values. The
values match the Key values displayed in the Diagnostic Viewer.

9 Build Discrete-Event Systems Using System Objects

9-36

Also observe 5 entities departing with Attribute1 value 4. These entities are generated in
storage 2 because Attribute1 cannot have the value 4 for the entities generated by the
Entity Generator block.

See Also
matlab.DiscreteEventSystem | entry | matlab.System | getEntityStorageImpl |
getEntityPortsImpl | generate | iterate

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55

 Build a Custom Block with Multiple Storages

9-37

Create a Custom Resource Acquirer Block
This example shows how to use resource management methods to create a custom entity storage
block in which entities acquire resources from specified Resource Pool blocks.

Suppose that you manage a facility that produces parts from two different materials, material 1 and
material 2, to fulfill orders. After a part is produced, it is evaluated for quality assurance.

Two testing methods for quality control are:

• Test 1 is used for parts that are produced from material 1.
• Test 2 is used for parts that are produced from material 2

After the production phase, parts are tagged based on their material to apply the correct test.

To generate the custom behavior, you create a discrete-event System object using the
matlab.DiscreteEventSystem class methods for resource management.

Create the Discrete-Event System Object
Generate a custom entity storage block with one input, one output, and one storage element.

The block accepts an entity of type Part to its storage with capacity 1. The entity has an attribute
Test to indicate the material from which the part is produced. Based on the value of the attribute,
the entity acquires a resource from the specified Resource Pool block and departs the block to be
tested.

See the Code to Generate the Custom Block to Acquire Resources
classdef CustomBlockAcquireResources < matlab.DiscreteEventSystem
 % Custom resource acquire block example.

 methods(Access = protected)

 function num = getNumInputsImpl(obj)
 num = 1;
 end

 function num = getNumOutputsImpl(obj)
 num = 1;
 end

9 Build Discrete-Event Systems Using System Objects

9-38

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes(1) = obj.entityType('Part');
 end

 function [input, output] = getEntityPortsImpl(obj)
 input = {'Part'};
 output = {'Part'};
 end

 function [storageSpec, I, O] = getEntityStorageImpl(obj)
 storageSpec(1) = obj.queueFIFO('Part', 1);
 I = 1;
 O = 1;
 end

 function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
 end

 end

 methods

 function [entity,events] = entry(obj, storage, entity, source)
 % On entity entry, acquire a resource from the specified pool.
 if entity.data.Test == 1
 % If the entity is produced from Material1, request Test1.
 resReq = obj.resourceSpecification('Test1', 1);
 else
 % If the entity is produced from Material2, request Test2.
 resReq = obj.resourceSpecification('Test2', 1);
 end
 % Acquire the resource from the corresponding pool.
 events = obj.eventAcquireResource(resReq, 'TestTag');
 end

 function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After the resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
 end

 end

end

Custom Block Behavior
1 Define Test1 and Test2 type resources to be acquired by the entity type Part.

function resNames = getResourceNamesImpl(obj)
 % Define the names of the resources to be acquired.
 resNames = obj.resourceType('Part', {'Test1', 'Test2'}) ;
end

2 The entity enters the storage. If its entity.data.Test value is 1, the entity is produced from
Material1. The entity acquires 1 resource from the Resource Pool block with resources of type
Test1. Similarly, If its entity.data.Test value is 2, the entity acquires one resource from the
Resource Pool block with resources of type Test2.
methods

 function [entity,events] = entry(obj, storage, entity, source)
 % On entity entry, acquire a resource from the specified pool.
 if entity.data.Test == 1
 % If the entity is produced from Material1, it acquires resource of type Test1.
 resReq = obj.resourceSpecification('Test1', 1);
 else
 % If the entity is produced from Material2, it acquires resource of type Test2.
 resReq = obj.resourceSpecification('Test2', 1);
 end
 % Acquire the resource from the corresponding pool.
 events = obj.eventAcquireResource(resReq, 'TestTag');

 Create a Custom Resource Acquirer Block

9-39

 end

 function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 % After the resource acquisition, forward the entity to the output.
 events = obj.eventForward('output', storage, 0.0);
 end

end

After the resource is successfully acquired, the resourceAcquired invokes the forwarding of
the entity.

Implement the Custom Block
1 Save the .m file as CustomBlockAcquireResources. Link the System object to a SimEvents

model by using a MATLAB Discrete-Event System block. For more information about linking, see
“Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2.

2 Create a SimEvents model using a MATLAB Discrete-Event System block, an Entity Generator
block and an Entity Terminator block, and two Resource Pool blocks. Connect the blocks as
shown in the diagram.

Label Entity Generator block as Part Generator and Entity Terminator block as Departure for
Testing.

3 In the Part Generator:

a In the Entity generation tab, set the Generate entity at simulation start to off.
b In the Entity type tab, set the Entity type name as Part and Attribute Name to Test.
c In the Event Actions tab, in the Generate action field enter:

entity.Test= randi([1 2]);

9 Build Discrete-Event Systems Using System Objects

9-40

Parts are generated with intergeneration time 1 and their Test attribute value is 1 or 2 to
indicate the material type.

4 In the Resource Pool block:

a Set the Resource name to Test1 and the Reusable upon release parameter to off.
b In the Statistics tab, output the Amount available, avail statistic and connect it to a scope.

5 In the Resource Pool1 block:

a Set the Resource name to Test2 and the Reusable upon release parameter to off.
b In the Statistics tab, output the Amount available, avail statistic and connect it to a scope.

6 Right-click the entity path from Part Generator to the MATLAB Discrete-Event System block and
select Log Selected Signals.

7 Simulate the model.

• Observe the Test attribute values of the incoming entities to the custom block. Three entities
require test 1 and seven entities requires test 2.

• Observe that three resources of type Test1 are acquired by entities.

 Create a Custom Resource Acquirer Block

9-41

• Observe that seven resources of type Test2 are acquired by entities.

9 Build Discrete-Event Systems Using System Objects

9-42

See Also
matlab.DiscreteEventSystem | entry | matlab.System | cancelAcquireResource |
getResourceNamesImpl | resourceAcquired | eventAcquireResource |
resourceSpecification

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55

 Create a Custom Resource Acquirer Block

9-43

Create a Discrete-Event System Object

In this section...
“Methods” on page 9-44
“Inherited Methods from matlab.System Class” on page 9-46
“Reference and Extract Entities” on page 9-47

The MATLAB Discrete-Event System block allows you to author a custom discrete-event System
object and use it in SimEvents models. To author event-driven entity-flow systems, the block uses
discrete-event System object with the matlab.DiscreteEventSystem class, which inherits and
extends the matlab.System class.

Methods
The matlab.DiscreteEventSystem class provides methods that let you work with these elements
of a discrete-event system:

9 Build Discrete-Event Systems Using System Objects

9-44

• Define properties of the object entity types, ports, and storage

• getEntityPortsImpl — Define input ports and output ports of discrete-event system
• getEntityStorageImpl — Define entity storage elements of discrete-event system
• getEntityTypesImpl — Define entity types of discrete-event system

• Event initialization

• setupEvents — Initialize entity generation events
• Runtime behavior of the object

• blocked — Event action when entity forward fails
• destroy — Event action upon entity destruction
• entry — Event action when entity enters storage element
• exit — Event action before entity exit from storage
• generate — Event action upon entity creation
• iterate — Event action when entity iterates
• modified — Event action upon entity modification by the Entity Find block
• resourceAcquired — Specify event actions upon successful resource acquisition.
• resourceReleased — Specify event actions upon successful resource release.
• testEntry — Event action to accept or refuse entity
• timer — Event action when timer completes

While implementing these methods, define entity type, entity storage, create, schedule, and cancel
events. Use these functions:

• Define entity type

• entityType — Define entity type
• Define entity storage

• queueFIFO — Define first-in first-out (FIFO) queue storage
• queueLIFO — Define last-in last-out (LIFO) queue storage
• queuePriority — Define priority queue storage
• queueSysPriority — Define system priority queue storage

• Create events

• eventGenerate — Create entity generate event
• eventIterate — Create entity iterate event
• eventTimer — Create entity timer event
• eventForward — Create entity forward event
• eventDestroy — Create entity destroy event
• eventTestEntry — Create an event to indicate that the acceptance policy for the storage has

changed and the storage retests arriving entities
• eventAcquireResource — Create a resource-acquiring event
• eventReleaseResource — Create an event to release previously acquired resources(This

method allows for partial resource release)

 Create a Discrete-Event System Object

9-45

• eventReleaseAllResources — Create an event to release all the resources acquired by an
entity

• Cancel events

• cancelDestroy — Cancel previously scheduled entity destroy event
• cancelForward — Cancel entity forward event
• cancelGenerate — Cancel previously scheduled entity generation event
• cancelIterate — Cancel previously scheduled iterate event
• cancelTimer — Cancel previously scheduled timer event
• cancelAcquireResource — Cancel previously scheduled resource acquisition event

• Resource Management

• getResourceNamesImpl — Define resource pools from which the discrete-event system
acquires the resources

• resourceType — Specify an entity type and the name of the resources to be acquired by the
specified entity

• eventAcquireResource — Create a resource-acquiring event
• eventReleaseResource — Create an event to release previously acquired resources (This

method allows for partial resource release)
• eventReleaseAllResources — Create an event to release all the resources acquired by an

entity
• cancelAcquireResource — Cancel previously scheduled resource acquisition event
• resourceSpecification — Specify the type and amount of resources for

eventAcquireResource or eventReleaseResource requests
• initResourceArray — Initialize a resourceSpecification array, required for code

generation
• resourceAcquired — Specify event actions upon successful resource acquisition
• resourceReleased — Specify event actions upon successful resource release

Inherited Methods from matlab.System Class
Inheriting matlab.DiscreteEventSystem class also inherits a subset of the matlab.System class
methods.

getHeaderImpl Header for System object display
getPropertyGroupsImpl Property groups for System object display
isInactivePropertyImpl Inactive property status
validatePropertiesImpl Validate property values
processTunedPropertiesImpl Action when tunable properties change
getNumInputsImpl Number of inputs to step method
getInputNamesImpl Names of System block input ports
getNumOutputsImpl Number of outputs from step method
getOutputNamesImpl Names of System block output ports

9 Build Discrete-Event Systems Using System Objects

9-46

getDiscreteStateImpl Discrete state property values
setupImpl Initialize System object
resetImpl Reset System object states
releaseImpl Release resources
loadObjectImpl Load System object from MAT file
saveObjectImpl Save System object in MAT file
infoImpl Information about System object
getOutputSizeImpl Sizes of output ports
getOutputDataTypeImpl Data types of output ports
isOutputComplexImpl Complexity of output ports
getDiscreteStateSpecificationImp
l

Discrete state size, data type, and complexity

getIconImpl Name to display as block icon
getSampleTime Query sample time

For more information about these methods, see “Customize System Objects for Simulink”.

Reference and Extract Entities
1 When referencing entity attributes or system properties in a discrete-event System object, use

these formats:

Attribute or
Property

Format Access

attribute entity.data.attribute_name Read/write
priority property entity.sys.priority Read/write
ID property entity.sys.id Read-only

2 If an entity that is a part of a MATLAB Discrete-Event System block is requested for extraction,
the exit method of the block is triggered. When the exit method is called, its destination
argument is set to extract. See modified for entity modification.

See Also
matlab.DiscreteEventSystem | matlab.System

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Customize Discrete-Event System Behavior Using Events and Event Actions” on page 9-51

 Create a Discrete-Event System Object

9-47

Generate Code for MATLAB Discrete-Event System Blocks
To improve simulation performance, you can configure the MATLAB Discrete-Event System to
simulate using generated code. With the Simulate using parameter set to Code generation
option, the block simulates and generates code using only MATLAB functions supported for code
generation.

MATLAB Discrete-Event System blocks support code reuse for models that have multiple MATLAB
Discrete-Event System blocks using the same System object source file. Code reuse enables the code
to be generated only once for the blocks sharing the System object.

Migrate Existing MATLAB Discrete-Event System System object
Starting in R2017b, the MATLAB Discrete-Event System block can simulate using generated code.
Existing applications continue to work with the Simulate using parameter set to Interpreted
execution.

If you want to generate code for the block using MATLAB discrete-event system acceleration, update
the System object code using these guidelines. For an example of updated MATLAB Discrete-Event
System System object, see the “Develop Custom Scheduler of a Multicore Control System” on page 6-
87 example.

Replace Renamed matlab.DiscreteEventSystem Methods

To take advantage of simulation with code generation for the matlab.DiscreteEventSystem class:

1 In the matlab.DiscreteEventSystem application file, change these method names to the new
names:

Old Method Name New Method Name
blockedImpl blocked
destroyImpl destroy
entryImpl entry
exitImpl exit
generateImpl generate
iterateImpl iterate
setupEventsImpl setupEvents
timerImpl timer

2 In the code, move the renamed method definitions from a protected area to a public area for each
matlab.DiscreteEventSystem method.

Initialize System Properties

Initialize System object properties in the properties section. Do not initialize them in the constructor
or other methods. In other words, you cannot use variable-size for System object properties.

Initialize Empty Arrays of Events

Use the initEventArray to initialize arrays.

9 Build Discrete-Event Systems Using System Objects

9-48

Before After
 function events = setupEventsImpl(obj) function events = setupEvents(obj)

 events = obj.initEventArray;

Append Elements to Array of Structures

Append elements to array of structures. For example:

Before After
 events(id) = obj.eventGenerate(1, num2str(id), ...
0, obj.Priorities(id)); %#ok<*AGROW>

events = [events obj.eventGenerate(1, int2str(id),...
 0, obj.Priorities(id))]; %#ok<AGROW>

Replace Functions That Do Not Support Code Generation

Replace functions that do not support code generation with functional equivalents that support code
generation. For example:

Before After
 events(id) = obj.eventGenerate(1, num2str(id), ...
0, obj.Priorities(id)); %#ok<*AGROW>

events = [events obj.eventGenerate(1, int2str(id),...
 0, obj.Priorities(id))]; %#ok<AGROW>

Declare Functions That Do Not Support Code Generation

For functions that do not support code generation and that do not have functional equivalents, use
the coder.extrinsic function to declare those functions as extrinsic. For example, str2double
does not have a functional equivalent. Before calling the coder.extrinsic, make the returned
variable the same data type as the function you are identifying. For example:

Before After
id = str2double(tag); coder.extrinsic('str2double');

id = 1;
id = str2double(tag);

• Do not pass System object to functions that are declared as extrinsic.
• Declare only static System object methods as extrinsic.

Replace Cell Arrays

Replace cell arrays with matrices or arrays of structures.

Before After
 entity.data.execTime = obj.ExecTimes{id}(1);entity.data.execTime = obj.ExecTimes(id, 1);

Change Flags to Logical Values

Change flags from values such as 1 and 0 to logical values, such as true and false.

Manage Global Data

Manage global data while simulating with code generation using one of these:

• evalin and assignin functions in the MATLAB workspace

 Generate Code for MATLAB Discrete-Event System Blocks

9-49

• “Static Data Object”

Move Logging and Graphical Functions

Many MATLAB logging and graphical functions do not support code generation. You can move
logging and graphical functions into:

• A new matlab.DiscreteEventSystem object and configure the associated MATLAB Discrete-
Event System block to simulate using Interpreted execution mode.

• An existing simevents.SimulationObserver object

Replace Persistent Variables

Replace persistent variable by declaring a System object property. See “Create System Objects” for
more information.

Limitations of Code Generation with Discrete-Event System Block
Limitations include:

• No “Global Variables”
• “System Objects in MATLAB Code Generation”
• “MATLAB System Block Limitations”

See Also
matlab.DiscreteEventSystem | blocked | cancelGenerate | cancelIterate | cancelTimer
| cancelForward | entry | eventForward | generate | getEntityPortsImpl |
getEntityTypesImpl | iterate | queueFIFO | setupEvents | timer | matlab.System

More About
• “Integrate System Objects Using MATLAB System Block”
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Create a Discrete-Event System Object” on page 9-44

9 Build Discrete-Event Systems Using System Objects

9-50

Customize Discrete-Event System Behavior Using Events and
Event Actions

In this section...
“Event Types and Event Actions” on page 9-51
“Event Identifiers” on page 9-53

You can customize the behavior of a discrete-event system by defining events and event actions.

You can:

• Schedule events
• Define event actions in response to events
• Initialize events
• Cancel events

Event Types and Event Actions
Event Types

A discrete-event system can have these event types and their targets.

Event type Target Purpose
eventAcquireResource Entity Allow an entity to acquire one or

more resources.
eventDestroy Entity Destroy an existing entity in

storage.
eventForward Entity Move an entity from its current

storage to another storage or
output port.

eventIterate Storage Iterate and process each entity
in storage.

eventReleaseResource Entity Allow an entity to release one or
more resources.

eventReleaseAllResources Entity Allow an entity to release all
previously acquired resources.

eventTestEntry Storage Create an event to indicate that
the storage acceptance policy is
changed and the storage retests
the arriving entities.

eventTimer Entity Create a timer event.
eventGenerate Storage Create an entity inside storage.

• Forward events

 Customize Discrete-Event System Behavior Using Events and Event Actions

9-51

If a forward event fails because of blocking, the forward event remains active. When space
becomes available, the discrete-event system reschedules the forward event for immediate
execution.

• Tagging events

You can schedule multiple events of the same type for the same actor. When using multiple events
of the same type, use tags to distinguish between the events. For example, an entity can have
multiple timers with distinct tags. When one timer expires, you can use the tag argument of the
timer method to differentiate which timer it is. For more information, see “Custom Entity Storage
Block with Multiple Timer Events” on page 9-19.

If you schedule two events with the same tag on the same actor, the later event replaces the first
event. If you schedule two events with different tags, the discrete-event system calls them
separately.

Event Actions

When an event occurs, a discrete-event system responds to it by invoking a corresponding action.
Implement these actions as System object methods. This table lists each action method and the
triggering event.

Event Action Triggering Event Purpose
blocked eventForward Called if, upon execution of a

forward event, the entity cannot
leave due to blocking from the
target storage.

destroy eventDestroy Called before an entity is
destroyed and removed from
storage.

entry eventForward Called upon an entity entry.
exit eventForward Called upon entity exit. When an

entity is forwarded from storage
1 to storage 2, the exit action of
storage 1 and then the entry
action of storage 2 are called.

generate eventGenerate Called after a new entity is
created inside a storage
element.

iterate eventIterate Upon the execution of an Iterate
event, this method is invoked for
each entity from the front to the
back of the storage, with the
option of early termination. If
entities need to be resorted due
to key value changes, resorting
takes place after the entire
iteration is complete.

9 Build Discrete-Event Systems Using System Objects

9-52

Event Action Triggering Event Purpose
resourceAcquired eventAcquireResource Called after a successful

resource acquisition. A resource
acquisition is successful only if
all of the specified resources are
acquired.

resourceReleased eventReleaseResource Called after the resource
release.

testEntry eventTestEntry Called after the test entry event.
timer eventTimer Called upon executing a timer

event of an entity.

Initialize Events

Use these methods to initialize empty arrays and events of a discrete-event system.

Event Type Purpose
initEventArray Initialize event array.
initResourceArray Initialize a resource specification array.
setupEvents Initialize entity generation events.

Cancel Previously Scheduled Events

Use these methods to cancel previously scheduled events of a discrete-event system.

Event type Purpose
cancelAcquireResource Cancel previously scheduled resource acquisition

event
cancelDestroy Cancel previously scheduled entity destroy event.
cancelForward Cancel entity forward event.
cancelGenerate Cancel previously scheduled entity generation

event.
cancelIterate Cancel previously scheduled iterate event.
cancelTimer Cancel previously scheduled timer event.

Event Identifiers
There are two distinct identifiers for the events provided by the matlab.DiscreteEventSystem
class.

• Tag — Use the tag as an input argument for a method.

event1 = obj.eventTimer('mytimer1', 2);
event2 = obj.eventTimer('mytimer2', 5);

Here, mytimer1 and mytimer2 are used as tags to refer to these two timer events.
• Destination — Use the destination to identify forward events.

 Customize Discrete-Event System Behavior Using Events and Event Actions

9-53

event1 = obj.eventForward('storage', 2, 0.8);
event2 = obj.eventForward('output', 1, 2);

Here, storage and output are used to distinguish two forward events.

The events are not distinguishable when their identifiers are the same. This table shows how to
identify an event when multiple events of the same type act on the same target.

Event Type Identification
eventAcquireResource Tag
eventGenerate Tag
eventIterate Tag
eventReleaseResource Tag
eventReleaseAllResources Tag
eventTimer Tag
eventForward Destination

Note If you define an event that is yet to be executed and a second event with the same type and
identifier, the first event is replaced by the second one.

See Also
matlab.DiscreteEventSystem | blocked | destroy | entry | eventForward | eventGenerate
| generate | setupEvents | matlab.System

More About
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-14
• “Integrate System Objects Using MATLAB System Block”
• “Create Custom Blocks Using MATLAB Discrete-Event System Block” on page 9-2
• “Create a Discrete-Event System Object” on page 9-44

9 Build Discrete-Event Systems Using System Objects

9-54

Call Simulink Function from a MATLAB Discrete-Event System
Block

This example shows how to call a Simulink function when an entity enters the storage element of a
custom discrete-event system block, and to modify entity attributes. For more information about
calling Simulink functions from MATLAB System block, see “Call Simulink Functions from MATLAB
System Block”.

To represent this behavior, a custom block is generated with one input, one output, and one storage
element. For more information about creating a custom entity storage block, see “Delay Entities with
a Custom Entity Storage Block” on page 9-9.

See the Code that Calls Simulink Function to Modify Entity Attributes
classdef CustomEntityStorageBlockSLFunc < matlab.DiscreteEventSystem

 % A custom entity storage block with one input, one output, and one storage.

 % Nontunable properties
 properties (Nontunable)
 % Capacity
 Capacity = 1;
 % Delay
 Delay = 4;
 end

 methods (Access=protected)
 function num = getNumInputsImpl(~)
 num = 1;
 end

 function num = getNumOutputsImpl(~)
 num = 1;
 end

 function entityTypes = getEntityTypesImpl(obj)
 entityTypes = obj.entityType('Car');
 end

 function [inputTypes,outputTypes] = getEntityPortsImpl(obj)
 inputTypes = {'Car'};
 outputTypes = {'Car'};
 end

 function [storageSpecs, I, O] = getEntityStorageImpl(obj)
 storageSpecs = obj.queueFIFO('Car', obj.Capacity);
 I = 1;
 O = 1;
 end

 function name = getSimulinkFunctionNamesImpl(obj)
 name = {'assignData'};
 end

 end

 methods

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Specify event actions when entity enters the storage.
 entity.Attribute1 = assignData();
 coder.extrinsic('fprintf');
 fprintf('Entity Attribute Value: %f\n', entity.Attribute1);

 event = obj.eventForward('output', 1, obj.Delay);

 end

 end

end

 Call Simulink Function from a MATLAB Discrete-Event System Block

9-55

Modify Entity Attributes
1 Define the name of the Simulink function to be called in the discrete-event System object using

the getSimulinkFunctionNamesImpl method.

 function name = getSimulinkFunctionNamesImpl(obj)
 % Declare the name of the Simulink Function.
 name = {'assignData'};
 end

The name of the Simulink function is declared as assignData.
2 Call assignData in the entry event action.

 function [entity,event] = CarEntry(obj,storage,entity,source)
 % Assign data when an entity enters the storage.
 entity.Attribute1 = assignData();
 coder.extrinsic('fprintf');
 fprintf('Entity Attribute Value: %f\n', entity.Attribute1);

 event = obj.eventForward('output', 1, obj.Delay);
 end

Build the Model
1 Create a model using an Entity Generator block, MATLAB Discrete-Event System block, and an

Entity Terminator block.
2 Open the MATLAB Discrete-Event System block, and set the Discrete-event System object

name to CustomEntityStorageBlockSLFunc.

3 Output the Number of entities departed, d statistic from the Entity Generator block and
connect it to a scope.

4 Add a Simulink Function block to your model.

a On the Simulink Function block, double-click the function signature and enter y =
assignData() .

9 Build Discrete-Event Systems Using System Objects

9-56

b In the Simulink Function block, add a Uniform Random Number block and change its
Sample time parameter to -1.

5 Simulate the model. The scope displays 3 entities departed the Entity Generator block.

6 The Diagnostic Viewer displays the random attribute values assigned to 3 entities when they
enter the storage.

See Also
matlab.DiscreteEventSystem | entry | matlab.System | getEntityStorageImpl |
getEntityPortsImpl | getEntityTypesImpl

More About
• “Delay Entities with a Custom Entity Storage Block” on page 9-9
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-14
• “Create a Discrete-Event System Object” on page 9-44
• “Generate Code for MATLAB Discrete-Event System Blocks” on page 9-48

 Call Simulink Function from a MATLAB Discrete-Event System Block

9-57

Resource Scheduling Using MATLAB Discrete-Event System and
Data Store Memory Blocks

This example shows how to model resource scheduling using data exchange between the MATLAB
Discrete-Event System block and the Data Store Memory block.

The example models a facility that generates two types of parts, Part A and Part B, that undergo a
heating process. Both parts acquire resources for the heating process from the same resource pool.
The resource acquisition for Part A has a higher priority. When Part A acquires a certain number
of resources, Part B can acquire only 1 resource. This constraint requires that the total number of
resources be shared between the processes and the acquisition scheduled based on the shared data.

Model Description

In the model, an Entity Generator Block generates entities of type PartA. The parts are then sent to a
storage unit to acquire resources from the Resource Pool block. A MATLAB Discrete-Event System
Block that uses the PartAStorage System Object™ represents the storage unit.

The System Object™ defines the amount of acquired resources and the resource acquisition event for
Part A.

function [entity,event] = PartAEntry(obj,storage,entity,source)
 % Define the amount of acquired resources as a random value.
 Amount = randi([1 3]);
 resReq = obj.resourceSpecification('Resources', Amount);
 % Define the resource acquisition event.
 event = obj.eventAcquireResource(resReq, 'ResourceAcq');
end

When Part A acquires the resources successfully, the entity is forwarded to the output.
TotalAcquiredByPartA is the data stored in the Data Store memory block representing the total

9 Build Discrete-Event Systems Using System Objects

9-58

number of acquired resources by Part A. The System Object™ first calls the value stored in Data
Store A. It updates and writes the new TotalAcquiredByPartA value by adding the number of
acquired resources.

function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 global TotalAcquiredByPartA;
 % After succesful resource acquisition, forward the entity
 % to the output |1|.
 events = obj.eventForward('output', 1, obj.Delay);
 % Update the total number of resources acquired.
 TotalAcquiredByPartA = TotalAcquiredByPartA + resources.amount;
end

The part is sent to Heating Process A, which is represented by an Entity Server block. When the
heating process is complete, the parts release the acquired resources and depart the facility.

In the model, another Entity Generator block generates entities of type Part B. The parts are then
sent to a storage unit to acquire resources from the Resource Pool block. A MATLAB Discrete-Event
System Block that uses the PartBStorage System Object™ represents the other storage unit.

The System Object™ defines the amount of acquired resources and the resource acquisition event for
Part B.

function [entity,event] = PartBEntry(obj,storage,entity,source)
 global TotalAcquiredByPartA;
 % If the number of resources acquired by Part A is greater than
 % 30 then Part B acquires only |1| resource.
 if TotalAcquiredByPartA > 30
 Amount = 1;
 else
 % Otherwise, Part B can acquire any number of resources between
 % |1| and |5|.
 Amount = randi([1 5]);
 end
 resReq = obj.resourceSpecification('Resources', Amount);
 % Define the resurce acquisition event.
 event = obj.eventAcquireResource(resReq, 'ResourceAcq');
end

The amount of resources Part B acquires depends on the resources acquired by Part A. This
acquisition is achieved by PartBStorage System Object™ that reads the value of
TotalAcquiredByPartA stored in Data Store A for each entity entry.

After successfully acquiring the resources, the entity is forwarded to the output. The System Object
(TM) updates TotalAcquiredByPartB and writes its new value to Data Store B.

function [entity,events] = resourceAcquired(obj, storage,...
 entity, resources, tag)
 global TotalAcquiredByPartB; % After succesful resource
 acquisition, forward the entity to the output. events =
 obj.eventForward('output', 1, obj.Delay); % Update the total number
 of resources acquired. TotalAcquiredByPartB = TotalAcquiredByPartB
 + resources.amount;
end

Then the parts are sent to Heating Process B. They release the resources after the process is
complete and depart the facility.

 Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory Blocks

9-59

Track Resources component in the model, tracks available resources and acquired number of
resources by each part. Available resources are measured by the Amount available, avail statistic
from the Resource Pool block. Resources acquired by Part A and Part B is observed by the output
of the Data Store Read blocks that read values from Data Store A and Data Store B.

Simulation Results

Simulate the model. Observe the Scope block connected to the Data Store Read Part A. The scope
shows that Part A acquires 30 resources around the simulation time 40.

Also observe the Scope block connected to Data Store Read Part B. The scope shows that Part B
acquires 1 resource after the simulation time 40 due to the prioritization of resources.

9 Build Discrete-Event Systems Using System Objects

9-60

See Also

More About
• “Call Simulink Function from a MATLAB Discrete-Event System Block” on page 9-55
• “Delay Entities with a Custom Entity Storage Block” on page 9-9
• “Create a Custom Entity Storage Block with Iteration Event” on page 9-14
• “Create a Discrete-Event System Object” on page 9-44

 Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory Blocks

9-61

Custom Visualization

• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-5

10

Use SimulationObserver Class to Monitor a SimEvents Model

In this section...
“SimulationObserver Class” on page 10-2
“Custom Visualization Workflow” on page 10-2
“Create an Application” on page 10-3
“Use the Observer to Monitor the Model” on page 10-4
“Stop Simulation and Disconnect the Model” on page 10-4

SimulationObserver Class
To create an observer, create a class that derives from the simevents.SimulationObserver
object. You can use observers to:

• Help understand queue impact, visualize entities moving through the model during simulation,
• Develop presentation tools showing model simulation via an application-oriented interface, such

as restaurant queue activity.
• Debug and examine entity activity.
• Examine queue contents.

The simevents.SimulationObserver object provides methods that let you:

• Create observer or animation objects.
• Identify model blocks for notification of run-time events.
• Interact with the event calendar.
• Perform activities when a model pauses, continues after pausing, and terminates.

SimEvents models call these functions during model simulation.

Custom Visualization Workflow
1 Create an application file.

a Define a class that inherits from the simevents.SimulationObserver class.
b Create an observer object that derives from this class.
c From the simevents.SimulationObserver methods, implement the functions you want

for your application. This application comprises your observer.
2 Open the model.
3 Create an instance of your class.
4 Run the model.

For more information about custom visualization, see “Create Custom Visualization”.

10 Custom Visualization

10-2

Create an Application
You can use these methods in your derived class implementation of
simevents.SimulationObserver.

Action Method
Specify behavior when simulation
starts.

simStarted

Specify behavior when simulation
pauses.

simPaused

Specify behavior when simulation
resumes.

simResumed

Define observer behavior when
simulation is terminating.

simTerminating

Specify list of blocks to be notified of
entity entry and exit events.

getBlocksToNotify

Specify whether you want notification
for all events in the event calendar.

notifyEventCalendarEvents

Specify behavior after an entity enters
a block that has entity storage.

postEntry

Specify behavior before an entity exits
a block with entity storage.

preExit

Specify behavior before execution of an
event.

preExecute

Add block to list of blocks to be
notified.

addBlockNotification

Remove block from list of blocks being
notified.

removeBlockNotification

Get handles to event calendars. getEventCalendars
Get list of blocks that store entities. getAllBlockWithStorages
Return block handle for a given block
path.

getHandleToBlock

Return storage handles of specified
block.

getHandlesToBlockStorages

1 In the MATLAB Command Window, select New > Class.
2 In the first line of the file, inherit from the simevents.SimulationObserver class. For

example:

classdef seRestaurantAnimator < simevents.SimulationObserver

seRestaurantAnimator is the name of the new observer object.
3 In the properties section, enter the properties for your application.
4 In the methods section, implement the functions for your application.
5 To construct the observer object, enter a line like the following in the methods section of the file:

 Use SimulationObserver Class to Monitor a SimEvents Model

10-3

function this = seRestaurantAnimator
 % Constructor
 modelname = 'seCustomVisualization';
 this@simevents.SimulationObserver(modelname);
 this.mModel = modelname;
 end

For more information, see “Using Custom Visualization for Entities” on page 6-63.

Use the Observer to Monitor the Model
1 Open the model to observe.
2 At the MATLAB command prompt, to enable the animator for the model:

>> obj=seRestaurantAnimator;
3 Simulate the model.

When the model starts, the animator is displayed in a figure window. As the model runs, it makes
calls into your application to see if you have implemented one of the predefined set of functions.
If your model does not contain a SimEvents block, you receive an error.

Note As a result of the instrumentation to visualize the simulation, the simulation is slower than
without the instrumentation.

Stop Simulation and Disconnect the Model
1 Stop the simulation.
2 At the MATLAB command prompt, clear the animator from the model. For example:

clear obj;

See Also
simevents.SimulationObserver

Related Examples
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-5
• “Visualization and Animation for Debugging” on page 5-11
• “Using Custom Visualization for Entities” on page 6-63

10 Custom Visualization

10-4

Observe Entities Using simevents.SimulationObserver Class

This example shows how to use simevents.SimulationObserver object to count entity
departures and acquire departure timestamps.

Use the simevents.SimulationObserver object to observe or visualize entities, and implement
animators to debug model simulations. For more information, see “Use SimulationObserver Class to
Monitor a SimEvents Model” on page 10-2.

In this model, the simevents.SimulationObserver object is used to acquire the number of
entities departing a block or a set of blocks in the model and timestamp their departures. The model
has two Entity Generator and Entity Terminator blocks and an Entity Server Block. The Scope blocks
display the Number of entities departed, d statistics for the Entity Generator and Entity Server
blocks.

Create the Observer

Open a new script and initiate the simevents.SimulationObserver object by this code.

classdef myObserverPreexit < simevents.SimulationObserver
 % Add the observer properties.
 properties
 Model
 % Initialize the property count.
 count
 end

properties (Constant, Access=private)
 increment = 1;
end

methods

 Observe Entities Using simevents.SimulationObserver Class

10-5

 % Observe any model by incorporating its name to MyObserverPreexit.
 function this = myObserverPreexit(Model)
 % Input model name to the simulation observer.
 this@simevents.SimulationObserver(Model);
 this.Model = Model;
 end

 % Initialize the count in the simulation start.
 function simStarted(this)
 this.count = 0;
 end

 % Specify list of blocks to be notified of entity entry and exit
 % events.
 function Block = getBlocksToNotify(this)
 Block = this.getAllBlockWithStorages();
 end

 function preExit(this,evSrc,Data)
 % Get the names of all storage blocks that the entities depart.
 % This returns the block with its path.
 Block = Data.Block.BlockPath;
 % Remove the path to display only the
 % block name.
 Block = regexprep(Block,'ObserverPreexitModel/' ,'');
 % Initialize the blocks to observe.
 BlockName = 'Entity Server';
 % If the block that entity exits contains the block name
 % acquire data for exit time and block name.
 if contains(Block, BlockName)
 % Get time for entity preexit from event calendar.
 evCal = this.getEventCalendars;
 Time = evCal(1).TimeNow;
 % Increase the count for departing entities.
 this.count = this.count + this.increment;

 myInfo = [' At time ',num2str(Time), ...
 ' an entity departs ', Block, ', Total entity count is ', ...
 num2str(this.count)];
 disp(myInfo);
 end
 end
 end
 end

Save the file as myObserverPreexit.m file.

Monitor the Model

Enable the observer object to monitor ObserverPreexitModel model.

obj = myObserverPreexit('ObserverPreexitModel');

The observer monitors the Entity Server block, which is determined by the BlockName parameter in
the observer file myObserverPreexit.m.

• Simulate the model. Click View Diagnostics on the model window and observe that the number
of entities departing the Entity Server block and the departure timestamps.

10 Custom Visualization

10-6

• For validation, observe the Scope block that displays the Number of entities departed, d
statistic for the Entity Server block.

Monitor Multiple Blocks in the Model

Use the same observer to monitor the entity departures from all of the Entity Generator blocks in
your model.

• Change the BlockName parameter in the preExit method to 'Entity Generator'. Entity
Generator blocks in the model are labeled Entity Generator1 and Entity Generator2.

function preExit(this,evSrc,Data)
 % Get the names of all storage blocks that the entities depart.
 % returns the block with its path.
 Block = Data.Block.BlockPath;
 % Remove the path to display only the block name
 Block = regexprep(Block,'ObserverPreexitModel/' ,'');
 % Initialize the common Entity Generator phrase
 BlockName = 'Entity Generator';
 % If the block that the entity exits contains the block name
 % acquire the exit time and the block name.
 if contains(Block, BlockName)
 % Get the time of entity preexit from the event calendar.
 evCal = this.getEventCalendars;
 Time = evCal(1).TimeNow;

 Observe Entities Using simevents.SimulationObserver Class

10-7

 % Increase the count of departing entities.
 this.count = this.count + this.increment;

 myInfo = [' At time ',num2str(Time), ...
 ' an entity departs ', Block, ', Total entity count is ', ...
 num2str(this.count)];
 disp(myInfo);
 end
end

• Enable the observer object to monitor ObserverPreexitModel model.

obj = myObserverPreexit('ObserverPreexitModel');

• Simulate the model. Observe the Diagnostic Viewer that displays the information for 15 entities
departing from both Entity Generator blocks.

• For validation, observe Scope1 and Scope2 blocks display the Number of entities departed, d
statistic for the Entity Generator1 and the Entity Generator2.

Observe that 4 entities depart Entity Generator1.

10 Custom Visualization

10-8

Also, 11 entities depart Entity Generator2. In total, 15 entities departed from the Entity Generator
blocks in the model.

 Observe Entities Using simevents.SimulationObserver Class

10-9

See Also
simevents.SimulationObserver | simStarted | preExit | getBlocksToNotify |
getEventCalendars

More About
• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2
• “Visualization and Animation for Debugging” on page 5-11
• “Using Custom Visualization for Entities” on page 6-63

10 Custom Visualization

10-10

Migrating SimEvents Models

11

Migration Considerations
To take advantage of SimEvents features, migrate legacy SimEvents models (pre-R2016a). Benefits
include:

Event actions MATLAB Discrete-Event System
block

Discrete-Event Chart block

Entity multicast Domain transitions Simulink integration

Unified entity type Entity Batch Creator and Splitter
blocks

Sequence Viewer

Use SimEvents software to:

• Modify entity attributes, service, and routes on events such as entity generation, entry, and exit.
• Create custom SimEvents blocks using MATLAB.
• Create Stateflow state transition diagrams that process entities, react to entity events, and follow

precise timing for temporal operations.
• Wirelessly broadcast copies of entities to multiple receive queues.
• Automatically switch between time-based and event-based signals.
• Use Simulink features, such as Fast Restart to speed up simulation runs and Simulation Stepper to

debug.
• Define entity types that are consistent across Simulink, Stateflow, and SimEvents products.
• Create and split batch of entities.
• Display interchange of messages and entities.

11 Migrating SimEvents Models

11-2

When You Should Not Migrate
If your legacy model contains timeout blocks, do not migrate the model. You can still access legacy
blocks to continue developing older models by using the blocks in the Legacy Block Library.

See Also

More About
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-6
• “Replace Old Blocks” on page 11-8
• “Connect Signal Ports” on page 11-11
• “Write Event Actions for Legacy Models” on page 11-15
• “Observe Output” on page 11-22
• “Reactive Ports” on page 11-23

 Migration Considerations

11-3

matlab:simeventslib

Migration Workflow
This migration workflow helps you migrate legacy SimEvents models to R2016a or later. In this
workflow, you create a new SimEvents model to replace your legacy SimEvents model. This is an
iterative workflow that requires you to repeat some steps.

1 Before you start, copy your legacy model to a backup folder. Run the old model and collect the
results using the Simulation Data Inspector (“Inspect Simulation Data”).

Note Pre-R2016a SimEvents blocks cannot coexist in a model with post-R2016a SimEvents
blocks.

2 Identify and redefine entity types (“Identify and Redefine Entity Types” on page 11-6)
3 When possible, replace old blocks with new blocks (“Replace Old Blocks” on page 11-8) and

reconfigure the new blocks.
4 Write event actions for these instances:

a Replace Set Attribute blocks with event actions in other blocks (“Replace Set Attribute
Blocks with Event Actions” on page 11-15)

11 Migrating SimEvents Models

11-4

b Replace Get Attribute blocks with event actions in other blocks (“Connect Signal Ports” on
page 11-11)

c Replace Attribute Function blocks with event actions in other blocks (“Replace Attribute
Function Blocks with Event Actions” on page 11-18)

d Replace random number generators with event actions in other blocks (“Replace Random
Number Distributions in Event Actions” on page 11-16)

5 Replace reactive ports (see “If Connected to Reactive Ports” on page 11-13).
6 Determine a strategy to observe output by replacing Discrete Event Signal to Workspace blocks

with To Workspace blocks or logging (“Observe Output” on page 11-22).
7 Verify the results by running the simulation and using Simulation Data Inspector to compare

these results with those you collect in step 1.

See Also

More About
• “Migration Considerations” on page 11-2
• “Identify and Redefine Entity Types” on page 11-6
• “Replace Old Blocks” on page 11-8
• “Connect Signal Ports” on page 11-11
• “Write Event Actions for Legacy Models” on page 11-15
• “Observe Output” on page 11-22
• “Reactive Ports” on page 11-23

 Migration Workflow

11-5

Identify and Redefine Entity Types
Identify entity types in the legacy model and redefine them in the new model.

1 In the old model, identify all Entity Generator blocks that feed each Entity Sink block.
2 In the model, from the Toolstrip, select Debug > Information Overlays > Base Data Types.
3 To see the attributes at each Entity Generator, Entity Sink, or other termination points of entity

flow, hover over the entity label to display attribute associated with the entity. A popup window
displays the attributes associated with the port.

Repeat this step for each block and note the attributes.
4 In the new model, add Entity Generator blocks to replace those in the legacy model.
5 In the model, in the Entity Generator block Entity type tab, define the entity type for each block

with the full list of attributes for that block (found in step 3).

This example shows the redefined attributes,

Once you define the entity types, return to “Migration Workflow” on page 11-4.

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Replace Old Blocks” on page 11-8
• “Connect Signal Ports” on page 11-11
• “Write Event Actions for Legacy Models” on page 11-15

11 Migrating SimEvents Models

11-6

• “Observe Output” on page 11-22
• “Reactive Ports” on page 11-23

 Identify and Redefine Entity Types

11-7

Replace Old Blocks
The primary goal in migration is to replace legacy SimEvents behavior with new SimEvents behavior.

This table lists:

• New SimEvents blocks to replace legacy SimEvents blocks
• Actions to take when there is no equivalent new SimEvents block to replace the legacy block.

Some of these actions are also part of the migration workflow.

Old Block Action for New SimEvents Model
Attribute Function Wait until “Replace Attribute Function Blocks with Event Actions” on

page 11-18.
Attribute Scope Wait until “If Using Get Attribute Blocks to Observe Output” on page

11-11.
Cancel Timeout Consider not yet migrating your model.
Conn Simulink Inport or Outport block.
Discrete Event Signal to
Workspace

Wait until “Observe Output” on page 11-22.

Enabled Gate Replace with Entity Gate.
Entity Combiner Replace with Composite Entity Creator.
Entity Departure Counter Wait until “Write Event Actions for Legacy Models” on page 11-15.
Entity Departure Function-
Call Generator

Wait until “Write Event Actions for Legacy Models” on page 11-15.

Entity Sink Replace with Entity Terminator.
Entity Splitter Replace with Composite Entity Splitter.
Entity Departure Function-
Call Generator

Wait until “Write Event Actions for Legacy Models” on page 11-15.

Event Filter Delete (block no longer needed).
Event to Timed Function-Call Delete (block no longer needed).
Event to Timed Signal Delete (block no longer needed).
Event-Based Entity
Generator

Replace with Entity Generator.

Event-Based Random
Number

Wait until “Replace Random Number Distributions in Event Actions” on
page 11-16.

Event-Based Sequence Wait until “Write Event Actions for Legacy Models” on page 11-15.
FIFO Queue Replace with Entity Queue.
Get Attribute Wait until “Connect Signal Ports” on page 11-11.
Infinite Server Replace with Entity Server.
Initial Value Delete (block no longer needed).
Input Switch Replace with Entity Input Switch.

11 Migrating SimEvents Models

11-8

Old Block Action for New SimEvents Model
Instantaneous Entity
Counting Scope

Wait until “If Using Get Attribute Blocks to Observe Output” on page
11-11.

Instantaneous Event
Counting Scope

Delete (block no longer needed).

LIFO Queue Replace with Entity Queue.
N-Server Replace with Entity Server.
Output Switch Replace with Entity Output Switch.
Path Combiner Input Switch (with All selected).
Priority Queue Replace with Entity Queue.
Read Timer For an example, see “Measure Point-to-Point Delays” on page 1-46.
Release Gate Replace with Entity Gate.
Replicate Replace with Entity Replicator.
Resource Acquire Replace with Resource Acquire.
Resource Pool Replace with Resource Pool.
Resource Release Replace with Resource Releaser.
Schedule Timeout Consider not yet migrating your model.
Set Attribute Wait until “Replace Set Attribute Blocks with Event Actions” on page

11-15.
Signal Latch Delete (block no longer needed).
Signal Scope Replace with Simulink Scope.
Signal-Based Function-Call
Event Generator

Wait until “If Connected to Reactive Ports” on page 11-13.

Signal-Based Function-Call
Generator

Wait until “If Connected to Reactive Ports” on page 11-13.

Single Server Replace with Entity Server.
Start Timer For an example, see “Measure Point-to-Point Delays” on page 1-46.
Time-Based Entity Generator Replace with Entity Generator.
Time-Based function-Call
Generator

Replace with Entity Generator.

Timed to Event Function-Call Delete (block no longer needed).
Timed to Event Signal Delete (block no longer needed).
X-Y Attribute Scope See “If Connected to Computation Blocks” on page 11-12.
X-Y Signal Scope Simulink XY Graph.

When done, return to “Migration Workflow” on page 11-4.

 Replace Old Blocks

11-9

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-6
• “Connect Signal Ports” on page 11-11
• “Write Event Actions for Legacy Models” on page 11-15
• “Observe Output” on page 11-22
• “Reactive Ports” on page 11-23

11 Migrating SimEvents Models

11-10

Connect Signal Ports
Previous releases use Get Attribute blocks to output the values of entity attributes. SimEvents 5.0 is
more closely tied to Simulink. This close association lets you use traditional Simulink tools to get
attribute values. Replace Get Attribute blocks using these guidelines.

If Connected to Gateway Blocks
SimEvents models no longer require gateway blocks. Remove all gateway blocks, as shown in the
figure:

Return to “Connect Signal Ports” on page 11-11.

If Using Get Attribute Blocks to Observe Output
If you use Get Attribute blocks to observe output, see “Observe Output” on page 11-22. For example,
you can use the Simulation Data Inspector to visualize entities from an Entity Generator block. This
example shows how to visualize entities using the Simulation Data Inspector, logging, and a scope.

 Connect Signal Ports

11-11

Return to “Connect Signal Ports” on page 11-11.

If Connected to Computation Blocks
If the Get Attribute block is connected to computational blocks, reproduce the behavior of these
blocks with Simulink Function blocks.

1 Place the computation blocks in a Simulink Function block.
2 Call the Simulink Function block from an event action.

This example places the Gain and Bias blocks in the Simulink Function block.

This table shows how each statistics port gets updated.

Statistics Port Updated on Event
Entry Exit Blocked Preempted

Number of entities
departed, d

Number of entities in
block, n

Number of entities
arrived, a

Pending entity
present in block, pe

Number of pending
entities, np

11 Migrating SimEvents Models

11-12

Statistics Port Updated on Event
Entry Exit Blocked Preempted

Number of entities
preempted, p

Average
intergeneration time,
w

Average wait, w

Average queue
length, l

Utilization, util

Return to “Connect Signal Ports” on page 11-11.

If Connected to Reactive Ports
In previous releases, reactive ports are signal input ports that listen for updates or changes in the
input signal. When the input signal changes, an appropriate reaction occurs in the block possessing
the port. Convert all reactive port event signals to messages, as in this example.

 Connect Signal Ports

11-13

For more information, see “Reactive Ports” on page 11-23.

Return to “Connect Signal Ports” on page 11-11.

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-6
• “Replace Old Blocks” on page 11-8
• “Write Event Actions for Legacy Models” on page 11-15
• “Observe Output” on page 11-22
• “Reactive Ports” on page 11-23

11 Migrating SimEvents Models

11-14

Write Event Actions for Legacy Models
When migrating legacy SimEvents models, you often must create event actions in these instances:

• Setting attribute values
• Getting attribute values
• Generating random number generation
• Using Event sequences
• Replacing Attribute Function blocks
• Using Simulink signals in an event-based computation

Replace Set Attribute Blocks with Event Actions
Use these guidelines to replace Set Attribute blocks:

• If the Set Attribute blocks immediately follow entity generator blocks to initialize attributes, in the
Entity Generator block, code the Generate action on the Event actions tab to set the attribute
initial value. For example:

entitySys.id=5;
• If the Set Attribute blocks change attributes, in the Entity Generator block, code the Create

action on the Event actions tab.

This example illustrates the Generation action to initialize the attribute values:

 Write Event Actions for Legacy Models

11-15

Return to “Migration Workflow” on page 11-4.

Get Attribute Values
If you write event actions to get attribute values, use a Simulink Function block:

1 Place the computation block in a Simulink Function block.
2 Pass the attribute value as an argument from the event action to the Simulink Function block.

Replace Random Number Distributions in Event Actions
You can generate random numbers using:

• “Random Number Distribution” on page 11-16
• “Example of Arbitrary Discrete Distribution Replacement” on page 11-17

Random Number Distribution

Replace Event-Based Random Number block random number distribution modes with equivalent
MATLAB code in event actions. For more information about generating random distributions, see
“Event Action Languages and Random Number Generation” on page 1-8.

11 Migrating SimEvents Models

11-16

If you need additional random number distributions, see “Statistics and Machine Learning Toolbox”.

Once you generate random numbers, return to “Migration Workflow” on page 11-4.

Example of Arbitrary Discrete Distribution Replacement

Here is an example of how to reproduce the arbitrary discrete distribution for the Event-Based
Random Number legacy block. Assume that the block has these parameter settings:

• Distribution: Arbitrary discrete
• Value vector: [2 3 4 5 6]
• Probability vector: [0.3 0.3 0.1 0.2 0.1]
• Initial seed: 12234

As a general guideline:

1 Set the initial seed, for example:

persistent init
if isempty(init)
 rng(12234);
 init=true;
end

2 Determine what the value vector is assigned to in the legacy model and directly assign it in the
action code in the new model. In this example, the value vector is assigned to the FinalStop.

3 To assign values within the appropriate range, calculate the cumulative probability vector. For
convenience, use the probability vector to calculate the cumulative probably vector. For example,
if the probability vector is:

[0.3 0.3 0.1 0.2 0.1]

The cumulative probability vector is:

[0.3 0.6 0.7 0.9 1]
4 Create a random variable to use in the code, for example:

x=rand();

Here is example code for this example block to calculate the distribution. The value vector is assigned
to FinalStop:
% Set initial seed.
persistent init
if isempty(init)
 rng(12234);
 init=true;
end
% Create random variable, x.
x=rand();
%
% Assign values within the appropriate range using the cumulative probability vector.
%
if x < 0.3
 entity.FinalStop=2;
elseif x >= 0.3 && x< 0.6
 entity.FinalStop=3;
elseif x >= 0.6 && x< 0.7
 entity.FinalStop=4;
elseif x >= 0.7 && x< 0.9
 entity.FinalStop=5;
else

 Write Event Actions for Legacy Models

11-17

 entity.FinalStop=6;
end

Once you generate random numbers, return to “Migration Workflow” on page 11-4.

Replace Event-Based Sequence Block with Event Actions
Replace Event-Based Sequence blocks, which generate a sequence of numbers from specified column
vectors, with event actions:

Replace Attribute Function Blocks with Event Actions
Replace Attribute Function blocks, which manipulate attributes using MATLAB code, with event
actions:

1 Copy the Attribute Function code, without the function syntax, to the Event actions tab in the
relevant event action.

2 To refer to the entity attribute, use the format entity.Attribute1.

For short or simple code, use constructs like these:

11 Migrating SimEvents Models

11-18

If you have longer or more complicated code, consider replacing the Attribute Function block with a
Simulink Function and copying the code without modification into the Simulink Function block.

 Write Event Actions for Legacy Models

11-19

Return to “Migration Workflow” on page 11-4.

If Using Simulink Signals in an Event-Based Computation
If you are using Simulink signals in an event-based computation, send the signals to a Simulink
Function block.

1 Copy the event-based computation code to a Simulink Function block.
2 Send the Simulink signals as inputs to the Simulink Function block.

For example:

11 Migrating SimEvents Models

11-20

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-6
• “Replace Old Blocks” on page 11-8
• “Connect Signal Ports” on page 11-11
• “Observe Output” on page 11-22
• “Reactive Ports” on page 11-23

 Write Event Actions for Legacy Models

11-21

Observe Output
Use these methods to observe output from your SimEvents model:

Items to Observe Visualization Tool
Statistics • Simulation Data Inspector

• Simulink To Workspace block
• Simulink Scope block
• Simulink Display block
• Simulink To File block
• Simulink Dashboard blocks

Entities passing through
model
Attributes

Count simultaneous entities
and messages

Simulation Data Inspector

Count simultaneous events Simulation Data Inspector — Each event is now a message reactive
port

Entities moving through
blocks in the model

Sequence Viewer

Entity animation Animation — Highlight active entities in the simulation
Step through Simulation Simulink Simulation Stepper
Custom animation SimEvents custom visualization API.

Return to “Migration Workflow” on page 11-4.

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-6
• “Replace Old Blocks” on page 11-8
• “Connect Signal Ports” on page 11-11
• “Write Event Actions for Legacy Models” on page 11-15
• “Reactive Ports” on page 11-23

11 Migrating SimEvents Models

11-22

Reactive Ports
In previous releases, reactive ports are signal input ports that listen for updates or changes in the
input signal. When the input signal changes, an appropriate reaction occurs in the block possessing
the port. Convert all reactive port event signals to messages.

Here is an example of sending a message when data is less than or equal to 0.

Here is an example of sending messages on trigger edges (rising, falling, or either).

Here is an example of sending messages based on value changes (rising, falling, or either).

 Reactive Ports

11-23

Here is a list of the reactive ports in SimEvents blocks and the action you can take for them.

List of Reactive Ports

New Block with
Reactive Port

Reactive Port Behavior Action in New SimEvents Model

Entity Gate To open a gate on an event In enabled mode, send a message that carries a
positive value to the port on the Entity Gate block.

In receive mode, send a message to advance one entity
for each message that arrives on the control port.

Entity Input Switch

Entity Output Switch

Value change To select a new port, send a message to the control
port of the Entity Input Switch or Entity Output
Switch.

Entity Generator Message arrival Send a message to create an event-based entity.

Return to “Migration Workflow” on page 11-4

See Also

More About
• “Migration Considerations” on page 11-2
• “Migration Workflow” on page 11-4
• “Identify and Redefine Entity Types” on page 11-6
• “Replace Old Blocks” on page 11-8
• “Connect Signal Ports” on page 11-11
• “Write Event Actions for Legacy Models” on page 11-15
• “Observe Output” on page 11-22

11 Migrating SimEvents Models

11-24

Troubleshoot SimEvents Models

12

Debug SimEvents Models
A breakpoint is a point of interest in the simulation at which the debugger can suspend the
simulation. SimEvents Debugger allows you to inspect entities, set breakpoints based on entities
leaving or entering storage elements, and step to events.

To enable debugging for a SimEvents model, add the SimEvents Debugger block to the model. When
you click Step Forward in the Simulink Toolstrip, the SimEvents Debugger displays.

The Explorer pane contains these nodes:

• Event calendar — Maintains a list of current and pending events for the model. Select the Break
before event execution check box to display event breakpoints on the Breakpoints node.

• Breakpoints — Lists the breakpoints previously set for the model. You can view breakpoints set
for the block, on event calendar, and for watched entities.

• Storage — Displays the entity inspector listing all the storage blocks in the model and check
boxes that let you select breakpoints. Blocks that contain entities are denoted with .

To set breakpoints for post entry and pre-exit of entities, select the PostEntry Break and PreExit
Break check boxes.

• Entity Queue — Displays the entity inspector listing the entities and attributes associated with
that block.

SimEvents Debugger is used in the “Modeling Hybrid Systems - Tank Filling” on page 6-52 example
to step through the model simulation, to set breakpoints, and to explore the event calendar.

12 Troubleshoot SimEvents Models

12-2

The SimEvents software also provides an API that helps you to create your own visualization and
debugging tools. For more information, see “Use SimulationObserver Class to Monitor a SimEvents
Model” on page 10-2.

Start the Debugger
1 Open the “Modeling Hybrid Systems - Tank Filling” on page 6-52 example.
2 Into the Simulink editor, add the SimEvents Debugger block at the top of the Tank Filling

Station model.
3 To start the debugger, in the Simulink editor toolstrip, click the Step Forward button.

The debugger displays in a paused state.
4

To step to the next event, click .

Note You can also click Continue () to have the debugger continue the simulation.
However, doing so without setting breakpoints causes the simulation to complete and the
debugger to close.

5 The debugger pauses at the next event and displays it in the event calendar. The current event is
highlighted in green.

Step Through Model
1 To look at the current and scheduled events, click the Event calendar1 item. To set breakpoints,

you can select the Break before event execution check box. The debugger hits the breakpoint

 Debug SimEvents Models

12-3

before the next scheduled event. This breakpoint is for any event type, including Forward,
Generate, ServiceComplete, Gateway, Destroy, and Trigger. Do not select this check box now.

2 To inspect the attributes of an entity, click the Fill This Tank storage element in the Explorer
pane.

12 Troubleshoot SimEvents Models

12-4

3 The Inspector pane shows a table with the entity sys.id. To track the entity as the model
simulates, click the associated check box.

4 To set breakpoints for when this entity enters and leaves the block, at the bottom of the
Inspector pane, select the two check boxes Break upon entity entry and Break prior to
entity exit.

Alternatively, to set the breakpoints on storage blocks all at once, click the Storage item in the
Explorer pane. Notice that the Fill This Tank block is highlighted because it contains entities.

Select the PostEntry Break check boxes for the blocks you want in this table.
5

To progress to the next event, click .
6 Click Continue. Simulation continues until the next PostEntry or PreExit event.

The block associated with the breakpoint is highlighted.
7 Step to the next event.

 Debug SimEvents Models

12-5

The next breakpoint at which the debugger stops is highlighted in the event calendar.
8 Continue the simulation.

12 Troubleshoot SimEvents Models

12-6

The simulation stops at the entity you opted to watch. As you continue the simulation or step
through the model, the debugger stops at the various breakpoints and watchpoints that you set,
letting you explore the model simulation.

9 To inspect the entities in a currently selected block in the model, select the block in the model,
then click the Inspect GCB button ().

The Inspector pane displays the current details of the entities in this block.

You can continue to set entity watchpoints and event breakpoints.

To list select blocks, events, or entities, type their names in the search boxes at the top of the
Explorer or Inspector panes.

The SimEvents software also provides a programmatic interface that lets you create your own
simulation observer or debugger. For more information, see “Create Custom Visualization”.

See Also
SimEvents Debugger

More About
• “Visualization and Animation for Debugging” on page 5-11
• “Observe Entities Using simevents.SimulationObserver Class” on page 10-5
• “Event Calendar” on page 6-3
• “Use SimulationObserver Class to Monitor a SimEvents Model” on page 10-2

 Debug SimEvents Models

12-7

	Working with Entities
	Events and Event Actions
	Overview of Events
	Write Custom Code for Event Actions
	SimEvents Blocks that Include Event Actions
	Using the Event Actions Assistant
	Track Events with Event Calendar
	Visualize Event Actions
	Preventing Livelock for Large Finite Numbers of Simultaneous Events

	Event Action Languages and Random Number Generation
	Guidelines for Using MATLAB as the Event Action Language
	Generate Random Numbers with Event Actions
	Parameters in Event Actions

	Generate Entities When Events Occur
	Generate Entity When First Entity is Destroyed
	Generate Event-Based Entities Using Data Sets

	Specify Intergeneration Times for Entities
	Determine Intergeneration Time

	Generate Multiple Entities at Time Zero
	Build the model

	Adjust Entity Generation Times Through Feedback
	Count Simultaneous Departures from a Server
	Noncumulative Counting of Entities
	Working with Entity Attributes and Entity Priorities
	Attach Attributes to Entities
	Set Attributes
	Use Attributes to Route Entities
	Entity Priorities

	Inspect Structures of Entities
	Display Entity Types
	Inspect Entities at Run Time

	Generate Entities Carrying Nested Data Structures
	Model Resource Allocation Using Composite Entity Creator Block
	Replicate Entities on Multiple Paths
	Modeling Notes

	Measure Point-to-Point Delays
	Basic Example Using Timer Blocks

	Modeling Queues and Servers
	Model Basic Queuing Systems
	Sort Entities Using the Entity Queue Block
	Queue Entity Overwriting Policies
	Customize Entity Service Time
	Build a Simple Queuing System to Change Entity Attributes
	Analyze Queue Length Using Statistics and Logical Queues

	Broadcast Entities Using Entity Multicasting
	Use Queue Event Actions to Model a Storage Tank
	Task Preemption in a Multitasking Processor
	Example Model for Task Preemption
	Model Behavior and Results

	Model Server Failure
	Server States
	Use a Gate to Implement a Failure State

	Serve High-Priority Customers by Sorting Entities Based on Priority

	Routing Techniques
	Route Vehicles Using an Entity Output Switch Block
	Control Output Switch with Event Actions and Simulink Function
	Control Output Switch with a Simulink Function Block
	Specify an Initial Port Selection

	Match Entities Based on Attributes
	Role of Gates in SimEvents Models
	Overview of Gate Behavior
	Gate Behavior

	Enable a Gate for a Time Interval
	Behavior of Entity Gate Block in Enabled Mode
	Sense an Entity Passing from A to B and Open a Gate
	Control Joint Availability of Two Servers

	Modeling Message Communication Patterns with SimEvents
	Build a Shared Communication Channel with Multiple Senders and Receivers
	Model an Ethernet Communication Network with CSMA/CD Protocol

	Work with Resources
	Model Using Resources
	Resource Blocks
	Resource Creation Workflow

	Set Resource Amount with Attributes
	Group Entities Using Batching
	Find and Extract Entities in SimEvents Models
	Finding and Examining Entities
	Extracting Found Entities
	Changing Found Entity Attributes
	Triggering Entity Find Block with Event Actions
	Building a Firewall and an Email Server

	Visualization, Statistics, and Animation
	Interpret SimEvents Models Using Statistical Analysis
	Output Statistics for Data Analysis
	Output Statistics for Run-Time Control
	Average Queue Length and Average Store Size
	Average Wait
	Number of Entities Arrived
	Number of Entities Departed
	Number of Entities Extracted
	Number of Entities in Block
	Number of Pending Entities
	Pending Entity Present in Block
	Utilization

	Visualization and Animation for Debugging
	Which Debugging Tool to Use
	Observe Entities with Animation
	Explore the System Using the Simulink Simulation Stepper
	Information About Race Conditions and Random Times

	Model Traffic Intersections as a Queuing Network
	Optimize SimEvents Models by Running Multiple Simulations
	Grocery Store Model
	Build the Model
	Run Multiple Simulations to Optimize Resources

	Use the Sequence Viewer to Visualize Messages, Events, and Entities
	Components of the Sequence Viewer Window
	Navigate the Lifeline Hierarchy
	View State Activity and Transitions
	View Function Calls
	Simulation Time in the Sequence Viewer Window
	Redisplay of Information in the Sequence Viewer Window

	Learning More About SimEvents Software
	Event Calendar
	Save SimEvents Simulation Operating Point
	Example Model to Count Simultaneous Departures from a Server
	Example Model for Noncumulative Entity Count
	Adjust Entity Generation Times Through Feedback
	A Simple Example of Generating Multiple Entities
	A Simple Example of Event-Based Entity Generation
	Serve Preferred Customers First
	Find and Examine Entities
	Extract Found Entities
	Trigger Entity Find Block with Event Actions
	Build a Firewall and an Email Server
	Implement the Custom Entity Storage Block
	Implement the Custom Entity Storage Block with Iteration Event
	Implement the Custom Entity Storage Block with Two Timer Events
	Implement the Custom Entity Generator Block
	Implement the Custom Entity Storage Block with Two Storages
	Generating and Initializing Entities
	M/M/1 Queuing System
	M/D/1 Queuing System
	G/G/1 Queuing System and Little's Law
	Comparing Queuing Strategies
	Modeling Hybrid Systems - Tank Filling
	Resource Allocation from Multiple Pools
	Using Entity Priority to Sequence Departures
	Using Custom Visualization for Entities
	Selection Server - Select Specific Entities from Server
	Flush Entities from a Queue-Server
	Server with Pause/Continue
	Simulation of a Medical Device
	Dining Philosophers Problem
	Simulate Scheduler of a Multicore Control System
	Develop Custom Scheduler of a Multicore Control System
	Distributing Multi-Class Jobs to Service Stations
	Effects of Communication Delays on an ABS Control System
	Aircraft Boarding Process Flow
	Optimization of Shared Resources in a Batch Production Process
	Modeling a Kanban Production System
	Job Scheduling and Resource Estimation for a Manufacturing Plant
	Modeling Load Within a Dynamic Voltage Scaling Application
	Modeling Machine Failure
	Inventory Management
	Modeling Cyber-Physical Systems
	802.11 MAC and Application Throughput Measurement
	802.11ax System-Level Simulation with Physical Layer Abstraction

	Use SimEvents with Simulink
	Working with SimEvents and Simulink
	Exchange Data Between SimEvents and Simulink
	Time-Based Signals and SimEvents Block Transitions
	SimEvents Support for Simulink Subsystems
	Save Simulation Data

	Solvers for Discrete-Event Systems
	Variable-Step Solvers for Discrete-Event Systems
	Fixed-Step Solvers for Discrete-Event Systems

	Model Simple Order Fulfilment Using Autonomous Robots
	Order Fulfilment Model
	Warehouse Component
	Order Queue Component
	Results

	Build Discrete-Event Systems Using Charts
	Create Custom Queuing Systems Using Discrete-Event Stateflow Charts
	Properties of Discrete-Event Chart
	Define Local Messages
	Specify Message Properties
	Event Triggering
	Message Triggering
	Temporal Triggering

	Discrete-Event Chart Precise Timing
	Trigger a Discrete-Event Chart Block on Message Arrival
	Dynamic Scheduling of Discrete-Event Chart Block

	Build Discrete-Event Systems Using System Objects
	Create Custom Blocks Using MATLAB Discrete-Event System Block
	Entity Types, Ports, and Storage in a Discrete-Event System Framework
	Events
	Implement a Discrete-Event System Object with MATLAB Discrete-Event System Block

	Delay Entities with a Custom Entity Storage Block
	Create the Discrete-Event System Object
	Implementing the Custom Entity Storage Block

	Create a Custom Entity Storage Block with Iteration Event
	Create the Discrete-Event System Object
	Define Custom Block Behavior
	Implement Custom Block

	Custom Entity Storage Block with Multiple Timer Events
	Create the Discrete-Event System Object with Multiple Timer Events
	Custom Block Behavior
	Implement Custom Block

	Custom Entity Generator Block with Signal Input and Signal Output
	Create the Discrete-Event System Object
	Custom Block Behavior
	Implement Custom Block

	Build a Custom Block with Multiple Storages
	Create the Discrete-Event System Object
	Custom Block Behavior
	Implement the Custom Block

	Create a Custom Resource Acquirer Block
	Create the Discrete-Event System Object
	Custom Block Behavior
	Implement the Custom Block

	Create a Discrete-Event System Object
	Methods
	Inherited Methods from matlab.System Class
	Reference and Extract Entities

	Generate Code for MATLAB Discrete-Event System Blocks
	Migrate Existing MATLAB Discrete-Event System System object
	Limitations of Code Generation with Discrete-Event System Block

	Customize Discrete-Event System Behavior Using Events and Event Actions
	Event Types and Event Actions
	Event Identifiers

	Call Simulink Function from a MATLAB Discrete-Event System Block
	Modify Entity Attributes
	Build the Model

	Resource Scheduling Using MATLAB Discrete-Event System and Data Store Memory Blocks

	Custom Visualization
	Use SimulationObserver Class to Monitor a SimEvents Model
	SimulationObserver Class
	Custom Visualization Workflow
	Create an Application
	Use the Observer to Monitor the Model
	Stop Simulation and Disconnect the Model

	Observe Entities Using simevents.SimulationObserver Class

	Migrating SimEvents Models
	Migration Considerations
	When You Should Not Migrate

	Migration Workflow
	Identify and Redefine Entity Types
	Replace Old Blocks
	Connect Signal Ports
	If Connected to Gateway Blocks
	If Using Get Attribute Blocks to Observe Output
	If Connected to Computation Blocks
	If Connected to Reactive Ports

	Write Event Actions for Legacy Models
	Replace Set Attribute Blocks with Event Actions
	Get Attribute Values
	Replace Random Number Distributions in Event Actions
	Replace Event-Based Sequence Block with Event Actions
	Replace Attribute Function Blocks with Event Actions
	If Using Simulink Signals in an Event-Based Computation

	Observe Output
	Reactive Ports

	Troubleshoot SimEvents Models
	Debug SimEvents Models
	Start the Debugger
	Step Through Model

